Properly Embedded Minimal Planar Domains with Infinite Topology are Riemann Minimal Examples

William H. Meeks III^{*} and Joaquín Pérez[†]

ABSTRACT. These notes outline recent developments in classical minimal surface theory that are essential in classifying the properly embedded minimal planar domains $M \subset \mathbb{R}^3$ with infinite topology (equivalently, with an infinite number of ends). This final classification result by Meeks, Pérez, and Ros [64] states that such an M must be congruent to a homothetic scaling of one of the classical examples found by Riemann [87] in 1860. These examples $\mathcal{R}_s, 0 < s < \infty$, are defined in terms of the Weierstrass \mathcal{P} -functions \mathcal{P}_t on the rectangular elliptic curve $\frac{\mathbb{C}}{\langle 1,t\sqrt{-1}\rangle}$, are singly-periodic and intersect each horizontal plane in \mathbb{R}^3 in a circle or a line parallel to the x-axis. Earlier work by Collin [22], López and Ros [49] and Meeks and Rosenberg [71] demonstrate that the plane, the catenoid and the helicoid are the only properly embedded minimal surfaces of genus zero with finite topology (equivalently, with a finite number of ends). Since the surfaces \mathcal{R}_s converge to a catenoid as $s \to 0$ and to a helicoid as $s \to \infty$, then the moduli space \mathcal{M} of all properly embedded, non-planar, minimal planar domains in \mathbb{R}^3 is homeomorphic to the closed unit interval [0, 1].

Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42.

CONTENTS

1.	Introduction	282
2.	Background	285
	2.1. Weierstrass representation and the definition of flux	286

©2009 International Press

^{*}This material is based upon work for the NSF under Awards No. DMS-0405836 and DMS-0703213. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF.

 $^{^\}dagger Research partially supported by a MEC/FEDER grant no. MTM2007-61775 and a Junta de Andalucía grant no. P06-FQM-01642.$