MARKOV CHAIN CLUSTERING OF BIRTHS BY SEX

JEROME KLOTZ
University of Wisconsin, Madison

1. Introduction and summary

This paper is concerned with a simple generalization of the Bernoulli trials model to a Markov chain which has an additional parameter that measures dependence between trials. Small and large sample distribution theories are worked out for the model with a new and simple closed form expression obtained for the exact distribution of the sufficient statistics.

The model is applied to a sample of birth order data from an appropriate human population and a slight dependence of sex on that of the previous child is found to be significant.

2. Notation and model

In the Bernoulli model, denote two valued random variables by $X_{i}=1$ with probability p and 0 with probability $q=1-p$, for $i=1,2, \cdots, n$. The joint distribution for a sequence of independent trials is given by

$$
\begin{equation*}
P\left[X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{n}=x_{n}\right]=p^{s} q^{n-s} \tag{2.1}
\end{equation*}
$$

where $s=x_{1}+x_{2}+\cdots+x_{n}$ and $x_{i}=1$ or 0 . To generalize this model to permit dependence between successive trials, consider a Markov chain with symmetric conditional probabilities given by

$$
\begin{equation*}
P\left[X_{i}=1 \mid X_{i-1}=1\right]=P\left[X_{i}=1 \mid X_{i+1}=1\right]=\theta p \tag{2.2}
\end{equation*}
$$

with the remaining conditional probabilities completely determined by symmetry:

$$
\begin{align*}
& P\left[X_{i}=0 \mid X_{i \pm 1}=1\right]=1-\theta p, \tag{2.3}\\
& P\left[X_{i}=1 \mid X_{i \pm 1}=0\right]=\frac{P\left[X_{i}=1, X_{i \pm 1}=0\right]}{P\left[X_{i \pm 1}=0\right]}=\frac{(1-\theta p) p}{q}, \tag{2.4}\\
& P\left[X_{i}=0 \mid X_{i \pm 1}=0\right]=1-\frac{(1-\theta p) p}{q}=\frac{1-2 p+\theta p^{2}}{q}, \tag{2.5}
\end{align*}
$$

and unconditionally

$$
\begin{equation*}
P\left[X_{i}=1\right]=1-P\left[X_{i}=0\right]=p \tag{2.6}
\end{equation*}
$$

With the partial support of the National Institutes of Health PHS. Research Grant GM-
10525-08 and the National Science Foundation under Grant GP-12093.

