NECESSARY CONDITIONS FOR DISCRETE PARAMETER STOCHASTIC OPTIMIZATION PROBLEMS

HAROLD J. KUSHNER BROWN UNIVERSITY

1. Introduction

Consider the following formal optimization problem. Let $\{\xi_i\}$ denote a sequence of random vectors, and define the sequence (1.1) of *n* dimensional vectors $\{X_i, i = 0, \dots, k\}, X_i = \{X_i^1, \dots, X_i^n\}$, where *k* is a fixed integer and u_i is a control, which is an element of an abstract set \tilde{U}_i :

(1.1)
$$X_{i+1} = X_i + f_i(X_i, u_i, \xi_i).$$

The object is to find the $\{u_i\}$ which minimizes

(1.2)
$$EX_{k}^{0} \equiv \sum_{i=0}^{k-1} f_{i}^{0}(X_{i}, u_{i}, \xi_{i}),$$
$$X_{i+1}^{0} = X_{i}^{0} + f_{i}^{0}(X_{i}, u_{i}, \xi_{i}), \qquad X_{i}^{0} \text{ fixed},$$

subject to certain constraints. Sometimes it is convenient to augment the vector X_i by adding X_i^0 , the "cost" component. Then, we write ${}^+\underline{X}_i = (X_i^0, X_i)$, $f_i = (f_i, f_i^0)$ and

(1.1')
$$\underline{X}_{i+1} = \underline{X}_i + \underline{f}_i(X_i, u_i, \xi_i).$$

The constraints are

(1.3)
$$r_0(X_0) \equiv E\tilde{r}_0(X_0) = 0, \qquad q_0(\underline{X}_0) \equiv E\tilde{q}_0(\underline{X}_0, E\underline{X}_0) \leq 0,$$
$$q_i(X_k) \equiv E\tilde{q}_i(X_i, EX_i) \leq 0, \qquad i = 1, \cdots, k,$$

$$(1.4) r_k(X_k) \equiv E\tilde{r}_k(X_k, EX_k) = 0,$$

where \tilde{r}_0 , \tilde{q}_0 , \tilde{r}_k , and \tilde{q}_i are vector valued functions. The q_0 is allowed to depend on X_0^0 in order to fix or limit X_0^0 in some way. That is, some component of $\tilde{q}_0(\underline{X}_0)$ may be $\tilde{q}_0^0(\underline{X}_0) = -X_0^0 \leq 0$.

This research was supported in part by the National Science Foundation under Grant No. GK 2788, in part by the National Aeronautics and Space Administration under Grant No. NGL 40-002-015, and in part by the Air Force Office of Scientific Research under Grant No. AF-AFOSR 67-0693A.