ON BASIC RESULTS OF POINT PROCESS THEORY

M. R. LEADBETTER University of North Carolina

1. Introduction

There are many existing approaches to the theory of point processes. Some of these—following the original work of Khinchin [9] are "analytical" and others (for example, [15], [8]) quite abstract in nature. Here we will take a position somewhat in the middle in describing the development of some of the basic theory of point processes in a relatively general setting, but by using largely the simple techniques of proof described for the real line in [11]. We shall survey a number of known results—giving simple derivations of certain existing theorems (or their adaptations in our setting) and obtain some results which we believe to be new. Our framework for describing a general point process will be essentially that of Belyayev [2], while that for Section 4 concerning Palm distributions is developed from the approach of Matthes [14].

First we give the necessary background and notation. There are various essentially equivalent ways of defining the basic structure of a point process. For example, for point processes on the line, one may consider the space of integer valued functions x(t) with x(0) = 0, which increase by a finite number of jumps in any finite interval. The events of the process then correspond to jumps of x(t). One advantage of such a specification is that multiple events fit naturally into the framework.

To define point processes on an arbitrary space T, it is often appropriate to consider the "sample points" ω to be subsets of T. This is the point of view taken in [18], where each ω is itself a countable subset of the real line, the set of points "where events occur." Sometimes, however, a point process arises from some existing probabilistic situation (such as the zeros of a continuous parameter stochastic process) and one may wish to preserve the existing framework in the discussion. A convenient structure for this is the following, used in [2]. Let (Ω, \mathcal{F}, P) be a probability space and (T, \mathcal{F}) a measurable space (T is the space "in which the events will occur"). For each $\omega \in \Omega$, let S_{ω} be a subset of T. If for each $E \in \mathcal{F}$

(1.1)
$$N(E) = N_{\omega}(E) = \text{card} (E \cap S_{\omega})$$

is a (possibly infinite valued) random variable, then S_{ω} is called a random set and the family $\{N(E): E \in \mathcal{F}\}$ a point process. The "events" of the process are, of course, the points of S_{ω} .