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1. Introduction

There are many existing approaches to the theory of point processes. Some
of these—following the original work of Khinchin [9] are “‘analytical”’ and
others (for example, [15], [8]) quite abstract in nature. Here we will take a
position somewhat in the middle in describing the development of some of the
basic theory of point processes in a relatively general setting, but by using largely
the simple techniques of proof described for the real line in [11]. We shall
survey a number of known results—giving simple derivations of certain existing
theorems (or their adaptations in our setting) and obtain some results which we
believe to be new. Our framework for describing a general point process will be
essentially that of Belyayev [2], while that for Section 4 concerning Palm
distributions is developed from the approach of Matthes [14].

First we give the necessary background and notation. There are various
essentially equivalent ways of defining the basic structure of a point process.
For example, for point processes on the line, one may consider the space of
integer valued funections x(t) with 2(0) = 0, which increase by a finite number
of jumps in any finite interval. The events of the process then correspond to
jumps of x(t). One advantage of such a specification is that multiple events fit
naturally into the framework.

To define point processes on an arbitrary space T, it is often appropriate to
consider the “‘sample points™ w to be subsets of 7. This is the point of view taken
in [18]. where each w is itself a countable subset of the real line, the set of points
“where events occur.”” Sometimes, however, a point process arises from some
existing probabilistic situation (such as the zeros of a continuous parameter
stochastic process) and one may wish to preserve the existing framework in the
discussion. A convenient structure for this is the following, used in [2]. Let
(Q, &. P) be a probability space and (7', ) a measurable space (T is the space
“in which the events will occur’”). For each w € Q, let S, be a subset of 7. If for
eachEe T

(1.1) NE)= N, E) = card (EnS,)

is a (possibly infinite valued) random variable, then S, is called a random set
and the family {N(E): E € 7 } a point process. The “‘events’ of the process are,
of course. the points of §,.
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