ON THE SUPPORT OF DIFFUSION PROCESSES WITH APPLICATIONS TO THE STRONG MAXIMUM PRINCIPLE

DANIEL W. STROOCK and S. R. S. VARADHAN
Courant Institute, New York University

1. Introduction

Let $a:[0, \infty) \times R^{d} \rightarrow S_{d}$ and $b:[0, \infty) \times R^{d} \rightarrow R^{d}$ be bounded continuous functions, where S_{d} denotes the class of symmetric, nonnegative definite $d \times d$ matrices. From a and b form the operator

$$
\begin{equation*}
L_{t}=\frac{1}{2} \sum_{i, j=1}^{d} a^{i j}(t, x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}(t, x) \frac{\partial}{\partial x_{i}} . \tag{1.1}
\end{equation*}
$$

A strong maximal principle for the operator $(\partial / \partial t)+L_{t}$ is a statement of the form: "for each open $\mathscr{G} \cong[0, \infty) \times R^{d}$ and each $\left(t_{0}, x_{0}\right) \in \mathscr{G}$ there is a set $\mathscr{G}\left(t_{0}, x_{0}\right) \subseteq \mathscr{G}$ with the property that $(\partial f / \partial t)+L_{t} f \geqq 0$ on $\mathscr{G}\left(t_{0}, x_{0}\right)$ and $f\left(t_{0}, x_{0}\right)=\sup _{\mathscr{G}_{\left(t_{0}, x_{0}\right)}} f(t, x)$ imply $f \equiv f\left(t_{0}, x_{0}\right)$ on $\mathscr{G}\left(t_{0}, x_{0}\right)$." Of course, in order for a strong maximum principle to be very interesting it must describe the set $\mathscr{G}\left(t_{0}, x_{0}\right)$. Further, it should be possible to show that $\mathscr{G}\left(t_{0}, x_{0}\right)$ is maximal. That is, one wants to know that if $\left(t_{1}, x_{1}\right) \in \mathscr{G}-\mathscr{G}\left(t_{0}, x_{0}\right)$, then there is an f satisfying $(\partial f / \partial t)+L_{t} f \geqq 0$ on \mathscr{G} (perhaps in a generalized sense) such that $f\left(t_{0}, x_{0}\right)=\sup f(t, x)$, and $f\left(t_{1}, x_{1}\right)<f\left(t_{0}, x_{0}\right)$.

In the case when $a(t, x)$ is positive definite for all (t, x), L. Nirenberg [6] has shown that $\mathscr{G}\left(t_{0}, x_{0}\right)$ can be taken as the closure in \mathscr{G} of the set of $\left(t_{1}, x_{1}\right) \in \mathscr{G} \cap$ $\left(\left[t_{0}, \infty\right) \times R^{d}\right)$ such that there exists a continuous map $\phi:\left[t_{0}, t_{1}\right] \Longrightarrow R^{d}$ with the properties that $\phi\left(t_{0}\right)=x_{0}, \phi\left(t_{1}\right)=x_{1}$, and $(t, \phi(t)) \in \mathscr{G}$ for all $t \in\left(t_{0}, t_{1}\right)$. We will give a probabilistic proof of the Nirenberg maximum principle in Section 3. Moreover, we will also prove there that Nirenberg's $\mathscr{G}\left(t_{0}, x_{0}\right)$ is maximal in the desired sense.

If a is only nonnegative definite, the problem of finding a suitable maximum principle is more difficult. Results in this direction have been proved by J.-M. Bony [1] and C. D. Hill [3]. Both of these authors employ a modification of the technique originally introduced by E. Hopf for elliptic operators and later adapted by Nirenberg for parabolic ones. The major drawback to Bony's

[^0]
[^0]: Results obtained at the Courant Institute of Mathematical Sciences, New York University, this research was sponsored by the U.S. Air Force Office of Scientific Research. Contract AF-49(638)-1719.

