ASYMPTOTIC DISTRIBUTION OF THE MOMENT OF FIRST CROSSING OF A HIGH LEVEL BY A BIRTH AND DEATH PROCESS

A. D. SOLOVIEV
Moscow State University, U.S.S.R.

1. Statement of the problem

In many applications of probability theory an essential role is played by birth and death processes, which is the name given to homogeneous Markov processes with a finite or countable number of states, which we denote by $0,1, \cdots, n, \cdots$, in which an instantaneous transition is only possible between adjacent states. The probabilities $P_{n}(t)=P\{\xi(t)=n\}$ of these states satisfy the system of differential equations (see [2])

$$
\begin{equation*}
P_{n}^{\prime}(t)=\lambda_{n-1} P_{n-1}(t)-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\mu_{n+1} P_{n+1}(t) \tag{1.1}
\end{equation*}
$$

$n=0, \mathrm{l}, \cdots$, where $\lambda_{-1}=\mu_{0}=0$.
If the number of states is finite and equals N, then $\lambda_{N}=\mu_{N+1}=0$. It is also assumed that all the other parameters λ_{n} and μ_{n} are positive. Let us consider the random variable $\tau_{k, n}, k<n$, the passage time from state k to state n :

$$
\begin{equation*}
\tau_{k, n}=\inf \{t: \xi(t)=n, t>0 \mid \xi(0)=k\} . \tag{1.2}
\end{equation*}
$$

The random variables $\tau_{k, n}$ are of considerable interest in reliability theory, where birth and death processes describe the behavior of storage systems with replace ments. If the states $0,1, \cdots, n-1$, correspond to functioning states of a system, and other states correspond to nonfunctioning states of a system, then the random variable $\tau_{k, n}$ may be regarded as the length of time that the system works without a failure, if it starts in state k. Most often the state $\xi(t)$ is taken to be the number of nonfunctioning elements, at time t, in some system, and it is assumed that at the starting time the system was completely functioning, that is, $\xi(0)=0$. Therefore, the study of the random variables $\tau_{0, n}$ is of greatest interest. Let us assume that our process has a stationary distribution. As is known [2], for this it is necessary and sufficient that the following conditions be satisfied:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \theta_{n}<\infty, \quad \sum_{n=0}^{\infty} \frac{1}{\lambda_{n} \theta_{n}}=\infty \tag{1.3}
\end{equation*}
$$

