INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS OF OPERATORS ON MARTINGALES

D. L. BURKHOLDER
University of Illinois
and
B. J. DAVIS and R. F. GUNDY
Rutgers University

1. Introduction

Let \mathscr{M} be a family of martingales on a probability space (Ω, \mathscr{A}, P) and let Φ be a nonnegative function on $[0, \infty]$. The general question underlying both [2] and the present work may be stated as follows: If U and V are operators on \mathscr{M} with values in the set of nonnegative \mathscr{A} measurable functions on Ω, under what further conditions does

$$
\begin{equation*}
\lambda^{p_{0}} P(V f>\lambda) \leqq c\|U f\|_{p_{0}}^{p_{0}}, \quad \lambda>0, f \in \mathscr{M}, \tag{1.1}
\end{equation*}
$$

imply $E \Phi(V f) \leqq c E \Phi(U f), f \in \mathscr{M}$? Here E denotes expectation, integration over Ω with respect to P, and the letter c denotes a positive real number, not necessarily the same number from line to line. In most applications, the first inequality can be proved easily for only one particular value of p_{0}, usually for $p_{0}=2$, although it is the second inequality that is really needed. Therefore, it is important to know conditions under which the second follows from the first.

In [2], the function Φ may be any nondecreasing function that satisfies a mild growth condition. The above question is then answered by suitably restricting the martingale f. In this paper, Φ is restricted to be convex, but no conditions are placed on the martingale f.

We state our main results in Section 2. Here, we mention one special but important application. If $f=\left(f_{1}, f_{2}, \cdots\right)$ is a martingale, we write

$$
\begin{array}{rlr}
f_{n} & =\sum_{k=1}^{n} d_{k} \\
f^{*} & =\sup _{n}\left|f_{n}\right| \tag{1.2}\\
S(f) & =\left(\sum_{k=1}^{\infty} d_{k}^{2}\right)^{1 / 2} & n \geqq 1 \\
\end{array}
$$

The maximal function f^{*} and the square function $S(f)$ are closely linked.
This research was supported in part by the National Science Foundation under Grants GP-23835 and GP-19222.

