ON POISSON LAWS AND RELATED QUESTIONS

L. SCHMETTERER MATHEMATICS INSTITUTE, VIENNA

1. Definitions and some lemmas

We shall consider a class of infinitely divisible laws, which may be called Poisson laws, defined on the Borel sets of a locally compact group. This class of probability measures is arrived at quite naturally by looking at the classical Poisson laws over the Borel sets \mathscr{B}_1 of one dimensional Euclidean space R_1 . Let a > 0. Then the standard Poisson law with mean a can be written in the form

(1.1)
$$\exp \{a(\delta_1 - \delta_0)\} = \delta_0 + \sum_{k=1}^{\infty} \frac{a^k}{k!} (\delta_1 - \delta_0)^k,$$

where δ_x is the Dirac measure at $x \in R_1$. Multiplication of measures means convolution. Convergence of the series means convergence in norm. The measure $a(\delta_1 - \delta_0)$ obviously satisfies the following conditions. If f belongs to the set $C(R_1)$ of bounded, continuous functions and fulfills the conditions $f \ge 0$ and f(0) = 0, then $a(\delta_1 - \delta_0)$ (f) ≥ 0 . Moreover, $a(\delta_1 - \delta_0)$ (1) = 0, where 1 denotes the function f identically equal to 1. It is well known that more general probability laws of the Poisson type may be defined along these lines. Let v be any bounded Radon measure defined over \mathscr{B}_1 and satisfying the conditions v(1) = 0 and $v(f) \ge 0$ for every $f \in C(R_1)$ with $f \ge 0$ and f(0) = 0. Then e^v is a probability law of Poisson type. Note that 0 is the neutral element of the additive group of R_1 , and that the set $\{0\}$ is a compact subgroup of R_1 . These considerations lead easily to a generalization of Poisson laws on arbitrary, locally compact groups. To achieve this, some simple definitions are needed.

DEFINITION 1.1. The set of all bounded Radon measures defined over the Borel sets \mathcal{B} of a locally compact group G is denoted by $\mathcal{R}(G)$, or just by \mathcal{R} . The subset of all probability measures is denoted by Z(G), or just by Z. If m is any measure in \mathcal{R} , then S(m) denotes its support.

DEFINITION 1.2. A measure $\mu \in Z$ is said to be infinitely divisible if for every natural number n there exists a $\mu_{1/n} \in Z$ which satisfies the equation $\mu_{1/n}^n = \mu$. The measure $\mu_{1/n}$ is called an nth root of μ .

DEFINITION 1.3. Let H be an arbitrary compact subgroup of G. Then e_H denotes that probability measure belonging to Z(G) whose restriction to $H \cap \mathscr{B}$ is the Haar measure; \mathscr{R}_H denotes the set of all $m \in \mathscr{R}$ which satisfy the equation $e_Hm = me_H = m$. The set $Z \cap \mathscr{R}_H$ is denoted by Z_H .