ON THE SPAN IN L^p OF SEQUENCES OF INDEPENDENT RANDOM VARIABLES (II)

HASKELL P. ROSENTHAL University of California, Berkeley

1. Introduction

This work is motivated by the following problem: which Banach spaces are isomorphic (linearly homeomorphic) to a complemented subspace of $L^p(=L^p[0, 1])$ for $1 , <math>p \neq 2$, and what are their linear topological properties? (A linear subspace A of a Banach space B is said to be complemented if there exists a bounded linear operator P on B with range A such that $P^2 = P$; such a P is called a projection onto A.) It is well known that ℓ^2 , ℓ^p , $\ell^2 \oplus \ell^p$, $(\ell^2 \oplus \ell^2 \oplus \cdots)_p$, and of course L^p itself, are examples of such Banach spaces. As usual, ℓ^p denotes the Banach space of sequences of scalars (x_n) such that $(\Sigma|x_n|^p)^{1/p} = ||(x_n)|| < \infty$; given Banach spaces B_1, B_2, \cdots ; we denote by $(B_1 \oplus B_2 \oplus \cdots)_p$ the Banach space of all sequences (b_n) such that $b_n \in B_n$ for all n and $||(b_n)|| = (\Sigma ||b_n||^p)^{1/p} < \infty$. Given a sequence (b_n) of elements of a Banach space B, we denote by $[b_n]$ the closed linear span of its terms; if $B = L^p$ of some probability space, then $[b_n]$ is denoted also by $[b_n]_p$.

To see that Hilbert space, that is, ℓ^2 is an example, one may consider a sequence (f_n) of two valued, symmetric, independent random variables; it follows from Khintchine's inequalities that $[f_n]_p$ is isomorphic to Hilbert space. Moreover, the 2 and p norms are equivalent on $[f_n]_p$, and orthogonal projection onto $[f_n]_2 = [f_n]_p$ shows that $[f_n]_p$ is complemented.

Now let $2 , and let <math>(f_n)$ be a sequence of independent, nonzero random variables belonging to L^p , each of mean zero. We proved in [11] that $[f_n]_p$ is isomorphic to a complemented subspace of L^p , and that $[f_n]_p$ is isomorphic to exactly one of four Banach spaces: ℓ^2 , ℓ^p , $\ell^2 \oplus \ell^p$, or a new space which we denote as \mathbf{X}_p . We showed moreover that if the f_n are three valued, symmetric, then $[f_n]_p$ is complemented in L^p by means of orthogonal projection, with $[f_n]_q$ thus complemented and isomorphic to $([f_n]_p)^*$, the dual of $[f_n]_p$ (throughout, pand q used together, denote reals satisfying 1/p + 1/q = 1). We thus obtained that \mathbf{X}_q (defined as the dual of \mathbf{X}_p) is isomorphic to the span of a sequence of independent random variables in L^q , providing the starting point for the present

The research for this paper was partially supported by NSF-GP-12997.