APPLICATIONS OF CONTIGUITY TO MULTIPARAMETER HYPOTHESES TESTING

R. A. JOHNSON and G. G. ROUSSAS UNIVERSITY OF WISCONSIN, MADISON

1. Summary and introduction

Consider a Markov process whose probability law depends on a k dimensional $(k \ge 2)$ parameter θ . The parameter space Θ is assumed to be an open subset of \mathbb{R}^k . For each positive integer n, we consider the surface E_n defined by $(z - \theta_0)'\Gamma(z - \theta_0) = d_n$ for some sequence $\{d_n\}$ with $0 < d_n = O(n^{-1})$; Γ is a certain positive definite matrix.

For testing the hypothesis $H: \theta = \theta_0$ against the alternative $A: \theta \neq \theta_0$, a sequence of tests is constructed which, asymptotically, possesses the following optimal properties within a certain class of tests. It has best average power over E_n with respect to a certain weight function; it has constant power on E_n and is most powerful within the class of tests whose power is (asymptotically) constant on E_n . Finally, it enjoys the property of being asymptotically most stringent.

In this paper, we are dealing with the problem of testing the hypothesis $H: \theta = \theta_0$ when the underlying process is Markovian. The parameter θ varies over a k dimensional open subset of R^k denoted by Θ . Since the alternatives consist of all $\theta \in \Theta$ which are different from θ_0 , one would not possibly expect to construct a test whose power would be "best" for each particular alternative. Therefore interest is centered on tests whose power is optimal over suitably chosen subsets of Θ . The class of subsets of Θ considered here consists of the surfaces of ellipsoids centered at θ_0 . The question then arises as to which restricted class of tests one could search and still obtain an optimal test. The discussion detailed in Section 5 produces a class of tests, denoted by \mathcal{F} , which consists of those tests each of which is the indicator function of the complement of a certain closed, convex set. The precise definition of \mathcal{F} is given in (4.4) and the arguments leading to it are due to Birnbaum [1] and Matthes and Truax [14]. The main steps of these arguments are summarized in an appendix for easy reference.

This research was supported by the National Science Foundation, Grant GP-20036.