ON INEQUALITIES OF CRAMÉR-RAO TYPE AND ADMISSIBILITY PROOFS

COLIN R. BLYTH ${ }^{1}$ and DONALD M. ROBERTS University of Illinois

1. Introduction and Summary

This paper is a discussion of the Hodges-Lehmann [7] method of proving admissibility for quadratic loss.

Section 2 compares the inequality $E U^{2} \geqq(E U)^{2}$ with the best Schwarz inequality $E U^{2} \geqq(E U)^{2}+\{\operatorname{Cov}(U, V)\}^{2} /$ Var V obtainable using linear functions of U and V, and considers invariance properties of these inequalities.

In Section 3, for a random variable X with possible distributions indexed by θ, we define a Cramér-Rao type inequality as one giving a lower bound on $\operatorname{Var} T(X)$ in terms of $E T(X)$. Theorem 2 shows that for the best Schwarz inequality Var $T \geqq\{\operatorname{Cov}(T, V)\}^{2} / \operatorname{Var} V$ using $V=V(X, \theta)$ to be of Cramér-Rao type, it is necessary that V depend on X only through a minimal sufficient statistic; this condition is also sufficient when there is a sufficient statistic with a complete family of possible distributions. In this case of completeness, it follows that the Cramér-Rao and Bhattacharyya inequalities require no regularity conditions beyond existence and nonconstancy of the derivatives involved.

Section 4 describes the Hodges-Lehmann method of proving an estimator T^{*} admissible for quadratic loss. In this method, the inequality showing that T makes T^{*} inadmissible is relaxed using the Cramér-Rao type inequality $\operatorname{Var}\left(T-T^{*}\right) \geqq\left\{\operatorname{Cov}\left(T-T^{*}, T^{*}\right)\right\}^{2} / \operatorname{Var} T^{*}$, and the relaxed inequality is shown to have no nontrivial solutions. In all examples known to us, this use of a Cramér-Rao type inequality can be replaced by a use of the weaker result $\operatorname{Var}\left(T-T^{*}\right) \geqq 0$; we suppose there are examples in which this cannot be done, but we have no such example.

Section 5 consists of several examples illustrating this method of proving admissibility.

2. Schwarz's inequality

For real valued random variables U and V, Schwarz's inequality

$$
\begin{equation*}
\left\{E U^{2}\right\}\left\{E V^{2}\right\} \geqq\{E U V\}^{2} \tag{2.1}
\end{equation*}
$$

means that if $E U^{2}$ and $E V^{2}$ both exist, then $E U V$ also exists and its square does not exceed their product.
${ }^{1}$ Work supported by NSF Grant GP 23835.

