EXISTENCE OF PHASE TRANSITIONS IN MODELS OF A LATTICE GAS

R. L. DOBRUSHIN
University of Moscow

1. Introduction

It is proved here that at sufficiently low temperatures, a phase transition occurs in the model of a lattice gas with pairwise interaction of the particles, if a constraint, meaning roughly that the negative part of the potential in some sense "outweighs" its positive part, is imposed on the interaction potential; or if the potential is nonzero, nonpositive, and decreases sufficiently zapidly at infinity. The proof is based on a further development of the method introduced independently by the author in [1], [2] for the proof of the existence of a phase transition in the Ising model of a lattice gas, and by Griffiths [3] for the solution of a similar problem. Using the same method, Berezin and Sinai [4] proved the existence of a phase transition in models of a lattice gas with a nonpositive finite potential, which is negative in the segment $[0, R]$.

All the constructions presented below are carried out analogously for lattices of any dimensionality greater than one (as is known, there are no phase transitions in one-dimensional lattices). For greater clarity, we carry out the reasoning for two-dimensional lattices (the generalization to higher dimensions is described in detail in [2]).

Let V_{ℓ} be a square with side ℓ in a two-dimensional square lattice, that is, the set of points $X=\left(x_{1}, x_{2}\right), x_{i}=1,2, \cdots, \ell ; i=1,2$. We shall call the subset $a=\left(X_{1}, \cdots, X_{N}\right)$ of N elements of V_{ℓ} the arrangement of N particles in the square V_{ℓ}. We denote the set of all such arrangements by $\mathcal{v}_{N, \ell}$. For clarity, we shall often interpret V_{ℓ} as a square piece of graph paper with unit square cells by assigning to the point of the lattice a cell whose center is this point. The arrangement a is thereby interpreted as a way of choosing N of the ℓ^{2} cells in V_{ℓ}, which are declared filled, while the rest, including the cells outside V_{ℓ}, are empty. The potential will be a function $U(Y)$ defined in the set R of all integer, two-dimensional vectors Y, except zero, and depending only on the length $|Y|$ of the vector Y. (The results extend almost without change to the case in which $U(Y)$ can depend on the direction of Y.) The number

$$
\begin{equation*}
Z(N, \ell, T)=\sum_{a \in \mathcal{V}_{N, \ell}} \exp \left\{-\frac{1}{T} \sum_{i<j} U\left(X_{i}-X_{j}\right)\right\} \tag{1.1}
\end{equation*}
$$

is called the statistical sum. The constant $T>0$ is the gas temperature. Suppose that

