EXISTENCE OF BOUNDED INVARIANT MEASURES IN ERGODIC THEORY

JACQUES NEVEU
University of Paris and University of California, Berkeley

1. Introduction

We present a survey of some of the recent work done on the problem of existence of bounded invariant measure for positive contractions defined on L^{1}-spaces.

2. Preliminaries

1. Positive linear forms on L^{∞}-spaces. Let (E, \mathcal{F}, μ) be a fixed measure space (with $\mu \sigma$-finite). Sets in \mathcal{F} and real measurable functions defined on $(E, \mathcal{F}$) will always be considered up to μ-equivalence; hence, all equalities or inequalities between measurable sets or functions are to be taken in the almost sure sense with respect to μ.

We will denote by f, g (with or without subscripts) elements of the Banach space $L^{1}(E, \mathfrak{F}, \mu)$ and by h elements of the Banach space $L^{\infty}=L^{\infty}(E, \mathcal{F}, \mu)$. The space L^{∞} is the strong dual of L^{1} for the bilinear form: $\langle f, h\rangle=\int_{E} f h d \mu$. Consideration of the strong dual of L^{∞}, in which L^{1} is isometrically imbedded, has often been helpful in analysis. We here recall the following lemma from the theory of vectorial lattices, of which we sketch a proof out of completeness.

Lemma 1. Let λ be a positive linear form defined on L^{∞}; that is, let $\lambda \in\left(L^{\infty}\right)^{\prime}{ }^{\prime}$. Then there exists a largest element g in L_{+}^{1} such that the form induced by it on L^{∞} verifies $g \leq \lambda$. Moreover, the complement $G=\{g=0\}$ of the support of g is the largest set in \mathfrak{F} (up to equivalence) for which there exists an $h \in L_{+}^{\infty}$ such that $h>0$ on G and $\lambda(h)=0$; in particular, the following equivalences hold:
(a) $g>0$ a.s. $\Rightarrow \lambda(h)>0$ for every $h \in L_{+}^{\infty}, h \neq 0$.
(b) $g=0$ a.s. $\Rightarrow \lambda(h)=0$ for at least one $h \in L^{\infty}$ such that $h>0$ a.s.

Proof. The class $\Lambda=\left\{f: f \in L_{+}^{1}, f \leq \lambda\right.$ on $\left.L_{+}^{\infty}\right\}$ is easily seen to be closed under least upper bounds and increasing limits; hence, $g=\sup \Lambda$ belongs to Λ, and is thus the largest element of Λ.

Given two linear forms ν_{1}, ν_{2} on L^{∞}, it is known and easily checked that the formula $\nu(h)=\inf \left\{\left[\nu_{1}(u)+\nu_{2}(h-u)\right] ; 0 \leq u \leq h\right\}$ where $h \in L_{+}^{\infty}$, defines on L_{+}^{∞} a linear form ν on L^{∞}, which is the g.l.b. of ν_{1} and ν_{2}. Now it follows from the

