EXISTENCE OF BOUNDED INVARIANT MEASURES IN ERGODIC THEORY

JACQUES NEVEU

UNIVERSITY OF PARIS and UNIVERSITY OF CALIFORNIA, BERKELEY

1. Introduction

We present a survey of some of the recent work done on the problem of existence of bounded invariant measure for positive contractions defined on L^1 -spaces.

2. Preliminaries

1. Positive linear forms on L^{∞} -spaces. Let (E, \mathfrak{F}, μ) be a fixed measure space (with $\mu \sigma$ -finite). Sets in \mathfrak{F} and real measurable functions defined on (E, \mathfrak{F}) will always be considered up to μ -equivalence; hence, all equalities or inequalities between measurable sets or functions are to be taken in the almost sure sense with respect to μ .

We will denote by f, g (with or without subscripts) elements of the Banach space $L^1(E, \mathfrak{F}, \mu)$ and by h elements of the Banach space $L^{\infty} = L^{\infty}(E, \mathfrak{F}, \mu)$. The space L^{∞} is the strong dual of L^1 for the bilinear form: $\langle f, h \rangle = \int_E fh d\mu$. Consideration of the strong dual of L^{∞} , in which L^1 is isometrically imbedded, has often been helpful in analysis. We here recall the following lemma from the theory of vectorial lattices, of which we sketch a proof out of completeness.

LEMMA 1. Let λ be a positive linear form defined on L^{∞} ; that is, let $\lambda \in (L^{\infty})'_+$. Then there exists a largest element g in L^1_+ such that the form induced by it on L^{∞} verifies $g \leq \lambda$. Moreover, the complement $G = \{g = 0\}$ of the support of g is the largest set in \mathfrak{F} (up to equivalence) for which there exists an $h \in L^{\infty}_+$ such that h > 0 on G and $\lambda(h) = 0$; in particular, the following equivalences hold:

(a) g > 0 a.s. $\Rightarrow \lambda(h) > 0$ for every $h \in L^{\infty}_{+}$, $h \neq 0$.

(b) g = 0 a.s. $\Rightarrow \lambda(h) = 0$ for at least one $h \in L^{\infty}$ such that h > 0 a.s.

PROOF. The class $\Lambda = \{f: f \in L^1_+, f \leq \lambda \text{ on } L^{\infty}_+\}$ is easily seen to be closed under least upper bounds and increasing limits; hence, $g = \sup \Lambda$ belongs to Λ , and is thus the largest element of Λ .

Given two linear forms ν_1 , ν_2 on L^{∞} , it is known and easily checked that the formula $\nu(h) = \inf \{ [\nu_1(u) + \nu_2(h - u)]; 0 \le u \le h \}$ where $h \in L^{\infty}_+$, defines on L^{∞}_+ a linear form ν on L^{∞} , which is the g.l.b. of ν_1 and ν_2 . Now it follows from the