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1. Introduction

In this paper we obtain local limit theorems, local limit theorems for large
deviations, and ratio limit theorems for multi-dimensional probability measures
which may be lattice, nonlattice, or a combination of the two.

2. Statements of results

Let Rd denote the set of d-tuples of real numbers x = (xI, * , xd). Let IA
denote a probability measure on the Borel subsets of Rd with characteristic
function f defined by

(2.1) f(O) = fRd eizxOp(dx), 0 = (01, O,d) E Rd,
where x a = x'01 + - + XdOd.
We assume that p is nondegenerate in that it is not supported by any (d - 1)-

dimensional affine subspace of Rd. Then by making a suitable linear trans-
formation on Rd, we can assume that IA is normalized in the following sense
(see Spitzer [10], pp. 64-75): there is an integer di, 0 < di < d, and there are
real numbers a', * , adA such that
(2.2) f(27rn,i , 2irnd,, 0, * - *, 0) = exp (27ri(nial + * + ndlCd,))
for integral ni , nd,, and If(0) < 1 for all other values of 0. If di = d, then
,u is lattice and if di = 0, then ,u is nonlattice.

Let ,u(n) denote the n-fold convolution of ,u with itself. It is clear that Il(n) is
supported by
(2.3) Dn = {x E RdIxk - nak is an integer for 1 < k < di}.
Note that Dn is independent of n if and only if we can take a' = * = adi = 0,
and in particular, that Dn = Rd if di = 0. The statements below can be simpli-
fied somewhat in these cases.

For the 0 < h < oo set
(2.4) Ih = {x eRd I IXk .< h/2 for l< k < d},
and
(2.5) 7h = {x E RdlXk= O for 1 < k < di and lXkl < h/2 for di < k < d}.
Also set x + Ih = {Y|Y- xE Ih} and x + 7h = {YIY - X l7h}.
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