ON LOCAL AND RATIO LIMIT THEOREMS

CHARLES STONE University of California, Los Angeles

1. Introduction

In this paper we obtain local limit theorems, local limit theorems for large deviations, and ratio limit theorems for multi-dimensional probability measures which may be lattice, nonlattice, or a combination of the two.

2. Statements of results

Let R^d denote the set of *d*-tuples of real numbers $x = (x^1, \dots, x^d)$. Let μ denote a probability measure on the Borel subsets of R^d with characteristic function f defined by

(2.1)
$$f(\theta) = \int_{\mathbb{R}^d} e^{ix \cdot \theta} \mu(dx), \qquad \theta = (\theta_1, \cdots, \theta_d) \in \mathbb{R}^d,$$

where $x \cdot \theta = x^1 \theta_1 + \cdots + x^d \theta_d$.

We assume that μ is nondegenerate in that it is not supported by any (d-1)dimensional affine subspace of \mathbb{R}^d . Then by making a suitable linear transformation on \mathbb{R}^d , we can assume that μ is normalized in the following sense (see Spitzer [10], pp. 64–75): there is an integer d_1 , $0 \leq d_1 \leq d$, and there are real numbers $\alpha^1, \dots, \alpha^{d_1}$ such that

(2.2) $f(2\pi n_1, \cdots, 2\pi n_{d_1}, 0, \cdots, 0) = \exp(2\pi i (n_1 \alpha^1 + \cdots + n_{d_i} \alpha^{d_i}))$

for integral n_1, \dots, n_{d_1} , and $|f(\theta)| < 1$ for all other values of θ . If $d_1 = d$, then μ is lattice and if $d_1 = 0$, then μ is nonlattice.

Let $\mu^{(n)}$ denote the *n*-fold convolution of μ with itself. It is clear that $\mu^{(n)}$ is supported by

(2.3) $D_n = \{x \in \mathbb{R}^d | x^k - n\alpha^k \text{ is an integer for } 1 \le k \le d_1\}.$

Note that D_n is independent of n if and only if we can take $\alpha^1 = \cdots = \alpha^{d_1} = 0$, and in particular, that $D_n = R^d$ if $d_1 = 0$. The statements below can be simplified somewhat in these cases.

For the $0 \leq h < \infty$ set

(2.4)
$$I_h = \{x \in \mathbb{R}^d \mid |x^k| \le h/2 \text{ for } 1 \le k \le d\},\$$

and

(2.5) $\overline{I}_h = \{x \in \mathbb{R}^d | x^k = 0 \text{ for } 1 \le k \le d_1 \text{ and } |x^k| \le h/2 \text{ for } d_1 < k \le d\}.$ Also set $x + I_h = \{y | y - x \in I_h\}$ and $x + \overline{I}_h = \{y | y - x \in \overline{I}_h\}.$