SOME PROBLEMS RELATING TO MARKOV GROUPS

JANE M. O. SPEAKMAN
University of Cambridge

1. Introduction

This paper forms a sequel to one by Professor D. G. Kendall [2]. We shall use the notation of that paper and assume the results in it. There are two parts: the first investigates the g-function in more detail and reduces the possible region for (γ, Γ), and the second establishes the existence of points on the (Γ, γ) diagram with $\Gamma \neq \gamma$.

The countable state space will be denoted by I.

2. Some properties of the g-function

We recall from [2] that a Markov semigroup has property (F) if and only if there is some $t>0$ such that $g(t)>\frac{1}{2}$. We are particularly interested in whether there are any non- (U)-semigroups with property (F). The following simple lemma will prove very useful.

Lemma 1. For all u and t such that $0<u<t$ and for all i and $k \in I$, there exist states j and l such that $p_{j, i}(u) \geq p_{k, i}(t)$ and $p_{l, i}(u) \leq p_{k, i}(t)$.

We have $p_{k, i}(t)=\sum_{h \in I} p_{k, h}(t-u) p_{h, i}(u)$. This is a convex combination of the $p_{h, i}(u)(h \in I)$, and so there exist states j and l as required.

Definition. Let $S_{i}(t)=\sup _{j} p_{j, i}(t)$ and $s_{i}(t)=\inf _{j} p_{j, i}(t)$.
Corollary. For each $i, S_{i}(t)$ is a nonincreasing function of t, and $s_{i}(t)$ is nondecreasing.

Theorem 1. (a) On the set $\left\{t: g(t) \geq \frac{1}{2}\right\}, g(t)$ is a nonincreasing function.
(b) A direct sum, $P(t)$, of semigroups, $P_{r}(t)$, each having the property that its g-function, $g_{r}(t)$, is continuous on the left, has $g(t) \leq \frac{1}{2}$ for all $t>0$ unless it enjoys property (U).
(c) If $g(t)=m>\frac{1}{2}$, then, for each $u<t$, either $g(u) \geq m$ or $g(u) \leq 1-m$.

When $g(t) \geq \frac{1}{2}, p_{i, i}(t) \geq \frac{1}{2}$ for all i. Since the row sums of $\dot{P}(t)$ are 1 , each off-diagonal element is less than or equal to $\frac{1}{2}$, and so, for such values of t, $S_{i}(t)=p_{i, i}(t)$ for every i. Statement (a) now follows from the above corollary.

To prove (b), first note that $g(t)=\inf _{r} g_{r}(t)$. We assume that for some $t_{0}>0$, $g\left(t_{0}\right)=m>\frac{1}{2}$. Then $g_{r}\left(t_{0}\right) \geq m$ for all r. The proof rests on the fact that for each $r, g_{r}(t)$ is monotone nonincreasing on [$0, t_{0}$]. By (a), it will be sufficient to show that for $t \in\left(0, t_{0}\right), g_{r}(t)$ is never less than $\frac{1}{2}$. Assume on the contrary that $g_{r}(T)<\frac{1}{2}$ for some $T \in\left(0, t_{0}\right)$. The semicontinuity of $g_{r}(t)$ implies that the set

