SOME THEOREMS CONCERNING RESOLVENTS OVER LOCALLY COMPACT SPACES

HIROSHI KUNITA Nagoya University

AND

TAKESI WATANABE*

THE INSTITUTE FOR ADVANCED STUDY and KYUSHU UNIVERSITY

1. Introduction and preliminaries

This article is concerned with two problems on resolvents defined over locally compact separable Hausdorff spaces; the generation of a strong Markov process from the given substochastic resolvent (sections 3 and 4) and the representation of excessive measures by means of minimal (or extreme) excessive measures (sections 5 to 11). These problems are closely connected, and our approach to them is based on the results of D. Ray [19] concerning resolvents over compact metric spaces (see section 2) and the metric completion of the original locally compact space with respect to the uniformity generated by a certain family of bounded continuous functions. Two types of the metric completion will be introduced; the completion of F. Knight [14] (in a specific way) in section 3 and the completion of R. S. Martin in section 6.

In the rest of this section we will give some basic definitions as well as a brief description of the first problem. Let (E, \mathfrak{B}) be a measurable space and \mathfrak{A} , the σ -field formed by all universally measurable sets, that is, sets which, for each finite measure μ over \mathfrak{B} , differ by at most a set of (μ) measure zero from a set of \mathfrak{B} . A (nonnegative) real-valued function $R_{\alpha}(x, A)$ defined for $\alpha > 0$, $x \in E$ and $A \in \mathfrak{B}$ is said to be a resolvent if the following conditions are satisfied. (R_1) For each $\alpha > 0$ and $x \in E$, $R_{\alpha}(x, \cdot)$ is a measure over (E, \mathfrak{B}) . (R_2) For each $\alpha > 0$ and $A \in \mathfrak{B}$, $R_{\alpha}(\cdot, A)$ is measurable (\mathfrak{A}) . (R_3) The resolvent equation

(1.1)
$$R_{\alpha}(x,A) - R_{\beta}(x,A) + (\alpha - \beta) \int R_{\alpha}(x,dy) R_{\beta}(y,A) = 0, \quad \alpha,\beta > 0$$

is satisfied. The unspecified integral always means the integral over the whole space E. (R_4) The substochastic condition

(1.2)
$$\alpha R_{\alpha}(x, E) \leq 1$$
 for every $\alpha > 0$ and $x \in E$

*Work supported by the National Science Foundation through the Institute for Advanced Study and the University of Illinois.