SOME THEOREMS CONCERNING RESOLVENTS OVER LOCALLY COMPACT SPACES

HIROSHI KUNITA
Nagoya University
AND
TAKESI WATANABE*
The Institute for Advanced Study and Kyushu University

1. Introduction and preliminaries

This article is concerned with two problems on resolvents defined over locally compact separable Hausdorff spaces; the generation of a strong Markov process from the given substochastic resolvent (sections 3 and 4) and the representation of excessive measures by means of minimal (or extreme) excessive measures (sections 5 to 11). These problems are closely connected, and our approach to them is based on the results of D. Ray [19] concerning resolvents over compact metric spaces (see section 2) and the metric completion of the original locally compact space with respect to the uniformity generated by a certain family of bounded continuous functions. Two types of the metric completion will be introduced; the completion of F. Knight [14] (in a specific way) in section 3 and the completion of R. S. Martin in section 6.

In the rest of this section we will give some basic definitions as well as a brief description of the first problem. Let (E, \mathbb{B}) be a measurable space and a, the σ-field formed by all universally measurable sets, tnat is, sets which, for each finite measure μ over \mathscr{B}, differ by at most a set of (μ) measure zero from a set of \mathbb{B}. A (nonnegative) real-valued function $R_{\alpha}(x, A)$ defined for $\alpha>0, x \in E$ and $A \in B$ is said to be a resolvent if the following conditions are satisfied. (R_{1}) For each $\alpha>0$ and $x \in E, R_{\alpha}(x, \cdot)$ is a measure over ($\left.E, \mathbb{B}\right)$. $\left(R_{2}\right)$ For each $\alpha>0$ and $A \in \mathbb{B}, R_{\alpha}(\cdot, A)$ is measurable (a). (R_{3}) The resolvent equation

$$
\begin{equation*}
R_{\alpha}(x, A)-R_{\beta}(x, A)+(\alpha-\beta) \int R_{\alpha}(x, d y) R_{\beta}(y, A)=0, \quad \alpha, \beta>0 \tag{1.1}
\end{equation*}
$$

is satisfied. The unspecified integral always means the integral over the whole space E. (R_{4}) The substochastic condition

$$
\begin{equation*}
\alpha R_{\alpha}(x, E) \leq 1 \quad \text { for every } \quad \alpha>0 \quad \text { and } \quad x \in E \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: *Work supported by the National Science Foundation through the Institute for Advanced Study and the University of Illinois.

