A SURVEY ON THE MARKOV PROCESS ON THE BOUNDARY OF MULTI-DIMENSIONAL DIFFUSION

TADASHI UENO University of Tokyo

1. Introduction

It has been observed that the Markov process on the boundary of diffusion is related to the solution of a diffusion equation in a domain D, $(\partial/\partial t)u = Au$, with Wentzell's boundary condition, Lu = 0. (Precise definitions of A and L are given in section 2, (2.1) and (2.3).) In fact, to obtain the solution, it is sufficient to solve $(\alpha - A)u(x) = 0, x \in D$ and $(\lambda - L)u(x) = \varphi(x), x \in \partial D$ for sufficiently many φ on the boundary ∂D , where $\alpha \ge 0$ and $\lambda \ge 0$ are fixed. This provides a class of Markov processes on ∂D ([13], [14]).

A kind of duality between the way of obtaining the diffusion on \overline{D} and the way of obtaining a process of this class naturally leads to a conjecture that the Markov process on the boundary is the trace on the boundary of the trajectory of the diffusion. Moreover, a simple example suggests that this trace is described by a time scale called the local time on the boundary t(t, w) in such a way that

(1.1)
$$\hat{x}(t, w) = x(t^{-1}(t, w), w),$$

where x(t) denotes the path function of the diffusion, x(t) denotes the Markov process on ∂D , and $t^{-1}(t, w)$ is the right continuous inverse of t [14]. In fact, K. Sato proved that this is true in the case of reflecting diffusion with sufficient regularities ([10], [11], [13]). Such a process on the boundary had not been explicitly discussed because the boundaries of one-dimensional diffusion are too simple.

However, the concepts of Markov process and local time on the boundary of a diffusion process can also be considered apart from the setup based on elliptic operator A and boundary condition L. In fact, a well-known correspondence between excessive functions and additive functionals insures the existence of a class of additive functionals which increase when and only when x(t, w) is on the boundary, and we obtain a Markov process $\hat{x}(t, w)$ on ∂D by making use of such a functional as before [8], [12], [13].

From this point of view, a part of the problem Feller solved in one dimension can be formulated in the following way. Given a diffusion process M on a domain \overline{D} , determine the class of all diffusions whose path functions coincide with those of M before they arrive at ∂D , where jumps from the boundary are permitted. In other words, let M^{\min} be a diffusion whose path functions vanish