## ON COMBINATORIAL METHODS IN THE THEORY OF STOCHASTIC PROCESSES

LAJOS TAKÁCS Columbia University

## 1. Introduction

The main object of this paper is to prove a simple theorem of combinatorial nature and to show its usefulness in the theory of stochastic processes. The theorem mentioned is as follows.

THEOREM 1. Let  $\varphi(u)$ ,  $0 \le u < \infty$ , be a nondecreasing step function satisfying the conditions  $\varphi(0) = 0$  and  $\varphi(t + u) = \varphi(t) + \varphi(u)$  for  $u \ge 0$  where t is a finite positive number. Define

(1) 
$$\delta(u) = \begin{cases} 1 & \text{if } v - \varphi(v) \ge u - \varphi(u) & \text{for } v \ge u, \\ 0 & \text{otherwise.} \end{cases}$$

Then

(2) 
$$\int_0^t \delta(u) \, du = \begin{cases} t - \varphi(t) & \text{if } 0 \le \varphi(t) \le t, \\ 0 & \text{if } \varphi(t) \ge t. \end{cases}$$

**PROOF.** If  $\varphi(t) > t$ , then  $\delta(u) = 0$  for every u, and thus the theorem is obviously true.

Now consider the case  $0 \le \varphi(t) \le t$ . For  $u \ge 0$  define  $\psi(u) = \inf \{v - \varphi(v) \text{ for } v \ge u\}$ . We have  $\psi(u) \le u - \varphi(u)$ , and  $\psi(u) = u - \varphi(u)$  if and only if  $\delta(u) = 1$  (compare figures 1, 2, 3).

It is clear that  $\psi(u+t) = \psi(u) + t - \varphi(t)$  for  $u \ge 0$  and that  $0 \le \psi(v) - \psi(u) \le v - u$  for  $0 \le u \le v$ . Thus  $\psi'(u)$  exists for almost all  $u, 0 \le \psi'(u) \le 1$ , and

(3) 
$$\int_0^t \psi'(u) \, du = \psi(t) - \psi(0) = t - \varphi(t)$$

because  $\psi(u)$  is a monotone and absolutely continuous function of u. We also note that  $\varphi(u + 0) = \varphi(u)$  and  $\varphi'(u) = 0$  for almost all u.

First we prove that

(4) 
$$\psi'(u) \leq \delta(u)$$
 for almost all  $u$ .

If  $\psi'(u)$  exists and if  $\psi'(u) = 0$ , then (4) evidently holds. Now we shall prove

This research was supported by the Office of Naval Research under Contract Number Nonr-266(59), Project Number 042-205. Reproduction in whole or in part is permitted for any purpose of the United States Government.