ON COMBINATORIAL METHODS IN THE THEORY OF STOCHASTIC PROCESSES

LAJOS TAKĀCS
Columbia University

1. Introduction

The main object of this paper is to prove a simple theorem of combinatorial nature and to show its usefulness in the theory of stochastic processes. The theorem mentioned is as follows.

Theorem 1. Let $\varphi(u), 0 \leq u<\infty$, be a nondecreasing step function satisfying the conditions $\varphi(0)=0$ and $\varphi(t+u)=\varphi(t)+\varphi(u)$ for $u \geq 0$ where t is a finite positive number. Define

$$
\delta(u)= \begin{cases}1 & \text { if } v-\varphi(v) \geq u-\varphi(u) \text { for } v \geq u \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\int_{0}^{t} \delta(u) d u=\left\{\begin{array}{l}
t-\varphi(t) \text { if } 0 \leq \varphi(t) \leq t \tag{2}\\
0 \text { if } \varphi(t) \geq t
\end{array}\right.
$$

Proof. If $\varphi(t)>t$, then $\delta(u)=0$ for every u, and thus the theorem is obviously true.

Now consider the case $0 \leq \varphi(t) \leq t$. For $u \geq 0$ define $\psi(u)=\inf \{v-\varphi(v)$ for $v \geq u\}$. We have $\psi(u) \leq u-\varphi(u)$, and $\psi(u)=u-\varphi(u)$ if and only if $\delta(u)=1$ (compare figures $1,2,3$).

It is clear that $\psi(u+t)=\psi(u)+t-\varphi(t)$ for $u \geq 0$ and that $0 \leq \psi(v)-$ $\psi(u) \leq v-u$ for $0 \leq u \leq v$. Thus $\psi^{\prime}(u)$ exists for almost all $u, 0 \leq \psi^{\prime}(u) \leq 1$, and

$$
\begin{equation*}
\int_{0}^{t} \psi^{\prime}(u) d u=\psi(t)-\psi(0)=t-\varphi(t) \tag{3}
\end{equation*}
$$

because $\psi(u)$ is a monotone and absolutely continuous function of u. We also note that $\varphi(u+0)=\varphi(u)$ and $\varphi^{\prime}(u)=0$ for almost all u.

First we prove that

$$
\begin{equation*}
\psi^{\prime}(u) \leq \delta(u) \quad \text { for almost all } u \tag{4}
\end{equation*}
$$

If $\psi^{\prime}(u)$ exists and if $\psi^{\prime}(u)=0$, then (4) evidently holds. Now we shall prove
This research was supported by the Office of Naval Research under Contract Number Nonr-266(59), Project Number 042-205. Reproduction in whole or in part is permitted for any purpose of the United States Government.

