OUTLINE OF SOME TOPICS IN LINEAR EXTRAPOLATION OF STATIONARY RANDOM PROCESSES

A. M. YAGLOM Academy of Sciences of the USSR

1. Introduction

We shall consider the frequently met problem of linear extrapolation of the stationary random processes x(s), $-\infty < s < \infty$, with Ex(s) = 0. The problem consists of finding that linear functional $\hat{x}(t;\tau)$, $\tau > 0$, of the values x(s) for $s \leq t$ (extrapolation according to the entire past of the process) or for $t - T \leq s \leq t$ (extrapolation of a process given on a finite interval) which would give the best approximation to the random variable $x(t + \tau)$. "Best" here is intended in the sense of least-squares; that is, it is required of the functional $\hat{x}(t;\tau)$ that the mean-square prediction error

(1)
$$\sigma^2(\tau) = E |x(t+\tau) - \hat{x}(t;\tau)|^2$$

takes on its minimum value.

A. N. Kolmogorov [1], [2] initiated the theory of linear least-squares extrapolation of stationary processes. This theory was developed further by M. G. Krein [3], N. Wiener [4], K. Karhunen [5], and others. At present, it has achieved a significant degree of completion (see, for example, Doob [6], chapter XII, or Rozanov [7]). We may formulate the general solution of this problem in the following way.

Let us start from the spectral representation of the stationary stochastic process in the form

(2)
$$x(s) = \int_{-\infty}^{\infty} e^{is\lambda} dZ(\lambda)$$

where $Z(\lambda)$ is the stochastic measure on the $-\infty < \lambda < \infty$ axis. This measure is connected to the spectral function $F(\lambda)$ of the process x(s) by the relationship

(3)
$$E\left\{\int_{S} dZ(\lambda) \cdot \int_{S_{1}} \overline{dZ(\lambda)}\right\} = \int_{S \cap S_{1}} dF(\lambda),$$

where the bar above the symbol signifies the complex conjugate. If $F'(\lambda)$ is zero on a set of nonzero Lebesgue measure, or if $F'(\lambda)$ is not zero almost everywhere but

(4)
$$\int_{-\infty}^{\infty} \frac{|\log F'(\lambda)|}{1+\lambda^2} d\lambda = \infty,$$