RANDOM DISTRIBUTION FUNCTIONS

LEsTER E. DUBINS and DAYID A. FREEDMAN
University of California, Berkeley

1. Introduction and summary

How can one choose, at random, a probability measure on the unit interval? This paper develops the answer announced in [4]. Section 1, which can be skipped without logical loss, gives a fairly full but slightly informal account. The formalities begin with section 2 . All later sections are largely independent of one another. Section 10 indexes definitions made in one section but used in other sections.

A distribution function F on the closed unit interval I is a nondecreasing, nonnegative, real-valued function on I, normalized to be 1 at 1 and continuous from the right. To each F there corresponds one and only one probability measure $|F|$ on the Borel subsets of I, with $F(x)$ equal to the $|F|$-measure of the closed interval $[0, x]$, for all $x \in I$. Choosing at random a probability on I is therefore tantamount to choosing at random a distribution function on I.

A random distribution function \mathbf{F} is a measurable map from a probability space (Ω, \mathcal{F}, Q) to the space Δ of distribution functions on the closed unit interval I, where Δ is endowed with its natural Borel σ-field, that is, the σ-field generated by the customary weak* topology. The distribution of \mathbf{F}, namely $Q F^{-1}$, is a prior probability measure on Δ. Of course, \mathbf{F} is essentially the stochastic process $\left\{F_{t}, 0 \leq t \leq 1\right\}$ on (Ω, \mathcal{F}, Q), whose sample functions are distribution functions: $F_{t}(\omega)$ is $\mathbf{F}(\omega)$ evaluated at t. Therefore, this paper can be thought of as dealing with a class of random distribution functions, with a class of stochastic processes, or with a class of prior probabilities. Similar priors are treated in [9], [11], [16], and [17].
Since the indefinite integral of a distribution function is convex, this paper can also be thought of as dealing with a class of random convex functions, but we do not pursue this idea.

Which class of random distribution functions does this paper study? A base probability μ is a probability on the Borel subsets of the unit square S, assigning measure 0 to the corners $(0,0)$ and (1,1). Each such μ determines a random distribution function \mathbf{F} and so a prior probability P_{μ} on Δ, which will now be described, by explaining how to select a value of F, that is, a distribution function F, at random.

Assumption. For ease of exposition, we assume throughout this section that μ concentrates on, that is, assigns probability 1 to, the interior of S.

This paper was supported in part by the National Science Foundation Grant GP-2593, and in part by a grant to Freedman from the Sloan Foundation.

