A CLASS OF OPTIMAL STOPPING PROBLEMS

Y. S. CHOW and H. ROBBINS PURDUE UNIVERSITY and COLUMBIA UNIVERSITY

1. Introduction and summary

Let x_1, x_2, \cdots , be independent random variables uniformly distributed on the interval [0, 1]. We observe them sequentially, and must stop with some x_i , $1 \leq i < \infty$; the decision whether to stop with any x_i must be a function of the values x_1, \cdots, x_i only. (For a general discussion of optimal stopping problems we refer to [1], [3].) If we stop with x_i we lose the amount $i^{\alpha}x_i$, where $\alpha \geq 0$ is a given constant. What is the minimal expected loss we can achieve by the proper choice of a stopping rule?

Let C denote the class of all possible stopping rules t; then we wish to evaluate the function

(1)
$$v(\alpha) = \inf_{t \in C} E(t^{\alpha}x_t).$$

If there exists a t in C such that $E(t^{\alpha}x_t) = v(\alpha)$, we say that t is optimal for that value of α . Let C^N for $N \ge 1$ denote the class of all t in C such that $P[t \le N] = 1$; then $C^1 \subset C^2 \subset \cdots \subset C$, and hence, defining

(2)
$$v^{N}(\alpha) = \inf_{t \in C^{N}} E(t^{\alpha}x_{t}),$$

we have

(3)
$$\frac{1}{2} = v^1(\alpha) \ge v^2(\alpha) \ge \cdots \ge v(\alpha) \ge 0.$$

We shall show that as $N \to \infty$,

(4)
$$v^{N}(\alpha) \sim \begin{cases} 2(1-\alpha)/N^{1-\alpha} & \text{for } 0 \leq \alpha < 1, \\ 2/\log N & \text{for } \alpha = 1, \end{cases}$$

from which it follows that

(5)
$$v(\alpha) = 0,$$
 for $0 \le \alpha \le 1.$

(For $\alpha = 0$, J. P. Gilbert and F. Mosteller [4] give the expression $v^N(0) \approx 2/(N + \log (N + 1) + 1.767)$; this case is closely related to a problem of optimal selection considered in [2]. It can be shown that $Nv^N(0) \uparrow 2$ as $N \to \infty$.)

Research supported by the Office of Naval Research under Contract Numbers Nonr-1100(26) and Nonr-266(59). Reproduction in whole or part is permitted for any purpose of the United States Government.