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1. Introduction

The problem of characterizing maximal points of convex sets often arises in the
study of admissible statistical decision procedures, of efficient allocation of eco-
nomic resources (cf. Koopmans, [4], chapter 1, and references given there), and
of mathematical programming (cf. Arrow, Hurwicz, and Uzawa, [2]).

Let C be a convex set in a finite dimensional vector space, partially ordered
coordinate-wise (that is, for x = (xi) and z = (zi), x > z means that xi 2 zi for
every coordinate i). Let D be the set of all strictly positive vectors (namely
vectors all of whose coordinates are strictly positive); further, let B be the set of
vectors in C that maximize -i yixi for some vector y = (yi) in D. It is obvious
that every vector in B is maximal in C with respect to the partial ordering <.
One can also show that every vector that is maximal in C also maximizes Es yix
on C for some nonnegative vector y. Arrow, Barankin, and Blackwell [1] showed
further that every vector maximal in C is in the (topological) closure of B. They
also gave an example (in 3 dimensions) in which a vector in the closure of B (and
in C) is not maximal in C.
The purpose of this note is to generalize the Arrow-Barankin-Blackwell result

to the case of t4, the space of bounded sequences topologized by the sup norm.
In this generalization, however, the set C is assumed to be compact.

2. The theorem

Let X denote t4, that is, the Banach space of all bounded sequences of real
numbers, with the sup norm topology, where the norm of x = (xi) in X is

(2.1) llxll sup Ixil.
i

For x in X, I shall say that x > 0 if xi 2 0 for every i, and that x > 0 if x> 0
but x = 0. Also, for xl = (xl) and x2 = (x2) in X, I shall say that xl > x2 if
x- x2 > 0 (and so on for xl > x2).
A point x in a subset C of X will be called maximal in C if there is no x in C for

which x > x.
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