A NOTE ON MAXIMAL POINTS OF CONVEX SETS IN ℓ_{∞}

ROY RADNER
University of California, Berkeley

1. Introduction

The problem of characterizing maximal points of convex sets often arises in the study of admissible statistical decision procedures, of efficient allocation of economic resources (cf. Koopmans, [4], chapter 1, and references given there), and of mathematical programming (cf. Arrow, Hurwicz, and Uzawa, [2]).

Let C be a convex set in a finite dimensional vector space, partially ordered coordinate-wise (that is, for $x=\left(x_{i}\right)$ and $z=\left(z_{i}\right), x \geq z$ means that $x_{i} \geq z_{i}$ for every coordinate i. Let D be the set of all strictly positive vectors (namely vectors all of whose coordinates are strictly positive); further, let B be the set of vectors in C that maximize $\sum_{i} y_{i} x_{i}$ for some vector $y=\left(y_{i}\right)$ in D. It is obvious that every vector in B is maximal in C with respect to the partial ordering \leq. One can also show that every vector that is maximal in C also maximizes $\sum_{i} y_{i} x_{i}$ on C for some nonnegative vector y. Arrow, Barankin, and Blackwell [1] showed further that every vector maximal in C is in the (topological) closure of B. They also gave an example (in 3 dimensions) in which a vector in the closure of B (and in C) is not maximal in C.

The purpose of this note is to generalize the Arrow-Barankin-Blackwell result to the case of ℓ_{∞}, the space of bounded sequences topologized by the sup norm. In this generalization, however, the set C is assumed to be compact.

2. The theorem

Let X denote ℓ_{∞}, that is, the Banach space of all bounded sequences of real numbers, with the sup norm topology, where the norm of $x=\left(x_{i}\right)$ in X is

$$
\begin{equation*}
\|x\| \equiv \sup _{i}\left|x_{i}\right| . \tag{2.1}
\end{equation*}
$$

For x in X, I shall say that $x \geq 0$ if $x_{i} \geq 0$ for every i, and that $x>0$ if $x \geq 0$ but $x \neq 0$. Also, for $x^{1}=\left(x_{i}^{1}\right)$ and $x^{2}=\left(x_{i}^{2}\right)$ in X, I shall say that $x^{1} \geq x^{2}$ if $x^{1}-x^{2} \geq 0$ (and so on for $x^{1}>x^{2}$).

A point \hat{x} in a subset C of X will be called maximal in C if there is no x in C for which $x>\hat{x}$.

This research was supported in part by the Office of Naval Research under Contract ONR $222(77)$ with the University of California, and by a grant to the University from the National Science Foundation.

