OPTIMUM MULTIVARIATE DESIGNS

R. H. FARRELL,¹ J. KIEFER,¹ and A. WALBRAN CORNELL UNIVERSITY

1. Introduction

1.1. Notation and preliminaries. This paper is concerned with the computation of optimum designs in certain multivariate polynomial regression settings.

Let $f = (f_1, \dots, f_k)$ be a vector of k real-valued continuous linearly independent functions on a compact set X. We shall work in the realm of the approximate theory discussed in many of the references, wherein a design is a probability measure ξ (which can be taken to be discrete) on X. The information matrix $M(\xi)$ of the design ξ for problems where the regression function is $\sum_{i}^{k} \theta_{i} f_{i}(x)$ (with $\theta = (\theta_{1}, \dots, \theta_{k})$ unknown and with uncorrelated homoscedastic observations and quadratic loss considerations of best linear unbiased estimators) has elements $m_{ij}(\xi) = \int f_{i}f_{j} d\xi$. Thus, det $M^{-1}(\xi)$ is proportional to the generalized variance of the best linear estimators of all θ_{i} . We denote by Γ the space of all $M(\xi)$. We shall have occasion to consider the set of all distinct functions of the form $f_{i}f_{j}$, $i \geq j$, and shall write them as $\{\phi_{i}, 1 \leq t \leq p\}$. We then write $\mu_{i}(\xi) = \int \phi_{i} d\xi$. Whether or not some ϕ_{i} is a nonzero constant (as it is in our polynomial examples), we define $\phi_{0}(x) \equiv 1$ and $\mu_{0} = 1$.

The main results of this paper characterize, for certain X and f, some designs ξ^* which are D-optimum; that is, for which

(1.1)
$$\det M(\xi^*) = \max_{\xi} \det M(\xi).$$

Define, for $M(\xi)$ nonsingular,

(1.2)
$$d(x, \xi) = f(x)M^{-1}(\xi)f(x)',$$
$$\bar{d}(\xi) = \max_{x \in X} d(x, \xi).$$

The quantity $d(x, \xi)$ is proportional to the variance of the best linear estimator of the regression $f(x)\theta'$ at x. A result of Kiefer and Wolfowitz [8] is that ξ^* satisfies (1.1) if and only if it satisfies the G-(global-) optimality criterion

(1.3)
$$\vec{d}(\xi^*) = \min_{\xi} \vec{d}(\xi),$$

and that (1.1) and (1.3) are satisfied if and only if

(1.4)
$$\overline{d}(\xi^*) = k.$$

If the support of an optimum design is exactly k points, then ξ is uniform on those points. Our main way of finding *D*- and *G*-optimum (hereafter simply

¹ Research supported by ONR Contract Nonr-401(03).