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1. Introduction

Let s = (a1, 3, - - - , ad inf) be a sequence of independent and identically dis-
tributed observations on a variable z with distribution depending on a parameter
6 taking values in a set ©. Let 6, be a subset of © and consider the null hypothesis
that 6 is in 6,. For each n, let T, = T.(z,, - - - , 2.) be a real-valued statistic such
that, in testing the hypothesis, large values of T, are significant. For any given
s, let L,(s) be the level attained by T, in the given case; that is, L,(s) is the
maximum probability (consistent with 6 in ) of obtaining a value of T, as
large or larger than T',(s). Then, in typical cases, L, is asymptotically distributed
uniformly over (0, 1) in the null case, and L, tends to zero in probability, or
perhaps even with probability one, in the nonnull case. The rate at which L,
tends to zero when a given nonnull § obtains is a measure of the asymptotic
efficiency of T', against that 6. It is shown in this paper (under very mild restric-
tions on the family of possible distributions of x) that L, cannot tend to zero at
a rate faster than [p(6)]* when a nonnull 8 obtains; here p is a parametric function
defined in terms of the Kullback-Leibler information numbers such that, in
typical cases, 0 < p < 1 (theorem 1). It is also shown (under much more re-
strictive conditions on the distributions of z) that if T, is (any strictly decreasing
function of) the likelihood ratio statistic of Neyman and Pearson [1], and L, is
the level attained by T',, then L, tends to zero at therate [p(9)]" in the nonnull
case (theorem 2). In short, the likelihood ratio statistic is an optimal sequence
in terms of exact stochastic comparison as deseribed and exemplified in [2], [3],
and [4].

Theorems 1 and 2 are stated more precisely in section 2. Section 3 contains a
discussion of these theorems. Proofs are given in sections 4 and 5.

2. Theorems

Let X be a space of points z, ® a ¢-field of sets of X, and for each point 8 in a
set 6, let Py be a probability measure on ®. Let 6, be a given subset of ©.
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