SOME INEQUALITIES AMONG BINOMIAL AND POISSON PROBABILITIES

T. W. ANDERSON ${ }^{1}$
Columbia University
and
S. M. SAMUELS ${ }^{2}$
Purdue University

1. Introduction

The binomial probability function

$$
\begin{align*}
b(k ; n, p) & =\binom{n}{k} p^{k}(1-p)^{n-k}, & & k=0,1, \cdots, n \tag{1.1}\\
& =0, & & k=n+1, \cdots
\end{align*}
$$

can be approximated by the Poisson probability function

$$
\begin{equation*}
p(k ; \lambda)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1, \cdots \tag{1.2}
\end{equation*}
$$

for $\lambda=n p$ if n is sufficiently large relative to λ. Correspondingly, the binomial cumulative distribution function

$$
\begin{equation*}
B(k ; n, p)=\sum_{j=0}^{k} b(j ; n, p), \quad k=0,1, \cdots \tag{1.3}
\end{equation*}
$$

is approximated by the Poisson cumulative distribution function

$$
\begin{equation*}
P(k ; \lambda)=\sum_{j=0}^{k} p(j ; \lambda), \quad k=0,1, \cdots \tag{1.4}
\end{equation*}
$$

for $\lambda=n p$. In this paper it is shown that the error of approximation of the binomial cumulative distribution function $P(k ; n p)-B(k ; n, p)$ is positive if $k \leq n p-n p /(n+1)$ and is negative if $n p \leq k$. In fact, $B(k ; n, \lambda / n)$ is monotonically increasing for all $n(\geq \lambda)$ if $k \leq \lambda-1$ and for all $n \geq k /(\lambda-k)$ if $\lambda-1<k<\lambda$, and is monotonically decreasing for all $n(\geq k)$ if $\lambda \leq k$. Thus

[^0]
[^0]: ${ }^{1}$ Research supported by the Office of Naval Research under Contract Number Nonr-4259(08), Project Number NR 042-034. Reproduction in whole or in part permitted for any purpose of the United States Government.
 ${ }^{2}$ Research supported in part by National Science Foundation Grant NSF-GP-3694 at Columbia University, Department of Mathematical Statistics, and in part by Aerospace Research Labooratories Contract AF 33(657)11737 at Purdue University.

