SOME PROBLEMS IN THE THEORY OF COMETS, II

DAVID G. KENDALL
magdalen college, oxford university

1. Let y_{1}, y_{2}, \cdots be independent random variables having the distribution

$$
\begin{equation*}
g(y) d y, \quad-\infty<y<\infty \tag{1.1}
\end{equation*}
$$

where $g(y)$ is an even function of y, and let R_{m} and S_{m} be defined for $m \geqq 1$ by

$$
\begin{align*}
S_{m} & =y_{1}+y_{2}+\cdots+y_{m} \tag{1.2}\\
R_{m} & =\min \left(0, S_{1}, S_{2}, \cdots, S_{m}\right)
\end{align*}
$$

let k be a constant in the range $0 \leqq k<1$. This paper is concerned with the function

$$
\begin{equation*}
C(z \mid x)=\sum_{m=1}^{\infty}(1-k)^{m} P\left\{x+R_{m}>0, x+S_{m} \leqq z\right\} \tag{1.3}
\end{equation*}
$$

where $x>0$ and $z \geqq 0$, which we shall study by the methods of Frank Spitzer [6], [7], [8]; the results will then be applied to an astronomical problem formulated in the first part [3] of this paper.

From theorem 4.1 of [6] (or from an earlier theorem of Faul Lévy) we know that $\lim \sup S_{m}=+\infty$ and that $\lim \inf S_{m}=-\infty$, with probability one, so that infinitely many terms of the sequence

$$
\begin{equation*}
x+S_{1}, x+S_{2}, \cdots \tag{1.4}
\end{equation*}
$$

will be zero or negative. Let the first such nonpositive term and all succeeding terms (of either sign) be removed from (1.4). Let a biased coin show heads with probability k and tails with probability ($1-k$), and in an infinite sequence of independent throws (independent also of the y) let the first head occur at the M th throw; we then remove the M th and all subsequent terms from the sequence (1.4) (if they still survive). The quantity $C(z \mid x)$ defined at (1.3) above will then be the expected number of terms $x+S_{m}$ in the curtailed sequence which lie in the half-open interval $(0, z]$. It is not clear from this definition that $C(z \mid x)$ is finite, but this will be proved in due course.

In the astronomical problem $C(z \mid x)$ is the expected number of complete circuits described round the sun by a comet initially in the positive energy state x,

Formerly Skynner Student in Astronomy, Balliol College, Oxford.

