LATTICE METHODS AND SUBMARKOVIAN PROCESSES

JACQUES NEVEU
UNIVERSITY OF PARIS

1. Introduction

1.1. Summary. This paper is a contribution to the study by lattice methods of stationary submarkovian processes on a denumerable state space. Our restriction to such simple spaces is only for clarity; it is by no means a restriction on the validity of the lattice methods. We have tried to present in this paper a synthesis of results recently obtained in the field of submarkovian processes as well as a certain number of new results.

We thought it preferable to introduce vector lattices only through their cones of positive elements (to be called L-cones); the basic notions concerning them are briefly summed up in this introduction. No representation using Stonian spaces has been introduced in this work.

Let $P=\left\{P_{t}, t \geqq 0\right\}$ be a submarkovian process on the denumerable set A. Then to every stochastic function $\left\{X_{t}\right\}$ defined for $t>0$, with transition laws given by P, is associated a family $f=\left\{f_{t}, t>0\right\}$ of positive measures on A of total mass $\leqq 1$ (the instantaneous laws of the X_{t}) such that

$$
\begin{equation*}
f_{s} P_{t}=f_{s+t}, \quad s, t>0 \tag{1.1.1}
\end{equation*}
$$

and conversely. There exists an initial distribution f_{0} such that $f_{t}=f_{0} P_{t}$ when, but only when, $\left\{X_{t}\right\}$ can also be defined for $t=0$. Recent advances in the theory have shown the interest of considering solutions of (1.1.1) with no restriction on the total mass of the f_{t} (which may even be infinite); for these more general solutions of (1.1.1), we prove in section 2.1 the following three basic properties:
(a) the t-functions $f_{t}(i)$ are continuous on $[0, \infty)$;
(b) the set $F(P)$ of all solutions f is an L-cone;
(c) the Laplace transform maps a "bounded solution" f onto a solution $\hat{f}=\left\{\hat{f}_{x}, x>0\right\}$ of the equations $\hat{f}_{y}\left[I+(y-x) R_{x}\right]=\hat{f}_{x}$, where $x, y>0$, and conversely.

Since the positivity and the continuity properties of the matrices P_{t} are the essential conditions under which these statements are true, it is remarked in section 2.2 that similar statements are valid for the positive solutions $g=$ $\left\{g_{t}, t>0\right\}$ of $P_{t} g_{s}=g_{s+t}$ with $s, t>0$.
Given two processes P (on A) and P^{\prime} (on A^{\prime}), families $C=\left\{C_{s, t} ; s, t>0\right\}$ of positive matrices on $A \times A^{\prime}$ that satisfy the relations

