## ON SOME CLASSES OF NONSTATIONARY STOCHASTIC PROCESSES

## HARALD CRAMÉR STOCKHOLM

## 1. Introduction

This paper will be concerned with stochastic processes with finite second-order moments. We start from a given probability space  $(\Omega, \mathfrak{F}, \mathfrak{P})$ , where  $\Omega$  is a space of points  $\omega$ , while  $\mathfrak{F}$  is a Borel field of sets in  $\Omega$ , and  $\mathfrak{P}$  is a probability measure defined on sets of  $\mathfrak{F}$ .

Any F-measurable complex-valued function  $X = x(\omega)$  defined for all  $\omega \in \Omega$ will be denoted as a random variable. We shall always assume that

(1)  
$$Ex = \int_{\Omega} x(\omega) d\mathfrak{P} = 0,$$
$$E|x|^2 = \int_{\Omega} |x(\omega)|^2 d\mathfrak{P} < \infty.$$

Two random variables which are equal except on a null set with respect to  $\mathfrak{P}$  will be regarded as identical, and equations containing random variables are always to be understood in this sense.

A family of random variables  $x(t) = x(t, \omega)$ , defined for all t belonging to some given set T, will be called a *stochastic process* defined on T. With respect to T, we shall consider only two cases:

(i) T is the set of all integers  $n = 0, \pm 1, \pm 2, \cdots$ ,

(ii) T is the set of all real numbers t.

With the usual terminology borrowed from the applications, we shall in these cases talk respectively of a stochastic process with *discrete time*, or with *continuous time*. In the first case, where we are concerned with a sequence of random variables, we shall usually write  $x_n$  in place of x(n).

With due modifications, the majority of our considerations may be extended to cases where T is some other set of real numbers.

We shall also consider *finite-dimensional vector-valued stochastic processes*, writing

(2) 
$$\mathbf{x}(t) = \{x^{(1)}(t), x^{(2)}(t), \cdots, x^{(q)}(t)\},\$$

where  $\mathbf{x}(t)$  is a q-dimensional column vector, while the components  $x^{(1)}(t)$ ,  $\cdots$ ,  $x^{(q)}(t)$  are stochastic processes in the above sense.