PROBABILISTIC METHODS IN MARKOV CHAINS

K. L. CHUNG SYRACUSE UNIVERSITY

1. Introduction

To avoid constant repetition of qualifying phrases, we agree on the following notation, terminology, and conventions, unless otherwise specified.

I is a denumerable set of indices. The letters i, j, k, and l, with or without subscript, denote elements of I.

 $\overline{I} = I \cup \{\infty\}$ is the one-point compactification of I considered as an isolated set of real numbers; $\infty > i$.

N is the set of nonnegative integers used as ordinals. The letters ν and n denote elements of **N**.

 $T = [0, \infty)$; $T^0 = (0, \infty)$. The letters s, t and u, with or without subscript, denote elements of T^0 .

A statement or formula involving an unspecified element of \mathbf{I} or \mathbf{T}^0 is meant to stand for every such element.

A sequence like $\{f_i\}$ is indexed by **I**; a matrix like (p_{ij}) is indexed by **I** \times **I**; a sum like \sum_i is over **I**.

A function is real and finite valued. A function defined on T^0 and having a right hand limit at zero is thereby extended to T; if in addition it is continuous in T^0 it is said to be continuous in T.

A (standard) transition matrix is a matrix (p_{ij}) of functions on \mathbf{T}^0 satisfying the following conditions:

$$(1.1) p_{ij}(t) \ge 0,$$

(1.2)
$$\sum_{j} p_{ij}(t) p_{jk}(s) = p_{ik}(t+s),$$

$$\lim_{t \downarrow 0} p_{ii}(t) = 1,$$

$$\sum_{j} p_{ij}(t) = 1.$$

A (temporally) homogeneous Markov chain, or a Markov chain with stationary transition probabilities, associated with I and (p_{ij}) , is a stochastic process $\{x_i\}$, $t \in \mathbf{T}$ or $t \in \mathbf{T}^0$, on the probability triple $(\Omega, \mathfrak{F}, \mathbf{P})$, with the generic sample point ω , having the following properties:

This paper was prepared with partial support of the Air Force Office of Scientific Research, under Contract AF 49(638)-265.