PROBABILISTIC METHODS IN MARKOV CHAINS ## K. L. CHUNG SYRACUSE UNIVERSITY ## 1. Introduction To avoid constant repetition of qualifying phrases, we agree on the following notation, terminology, and conventions, unless otherwise specified. I is a denumerable set of indices. The letters i, j, k, and l, with or without subscript, denote elements of I. $\overline{I} = I \cup \{\infty\}$ is the one-point compactification of I considered as an isolated set of real numbers; $\infty > i$. **N** is the set of nonnegative integers used as ordinals. The letters ν and n denote elements of **N**. $T = [0, \infty)$; $T^0 = (0, \infty)$. The letters s, t and u, with or without subscript, denote elements of T^0 . A statement or formula involving an unspecified element of \mathbf{I} or \mathbf{T}^0 is meant to stand for every such element. A sequence like $\{f_i\}$ is indexed by **I**; a matrix like (p_{ij}) is indexed by **I** \times **I**; a sum like \sum_i is over **I**. A function is real and finite valued. A function defined on T^0 and having a right hand limit at zero is thereby extended to T; if in addition it is continuous in T^0 it is said to be continuous in T. A (standard) transition matrix is a matrix (p_{ij}) of functions on \mathbf{T}^0 satisfying the following conditions: $$(1.1) p_{ij}(t) \ge 0,$$ (1.2) $$\sum_{j} p_{ij}(t) p_{jk}(s) = p_{ik}(t+s),$$ $$\lim_{t \downarrow 0} p_{ii}(t) = 1,$$ $$\sum_{j} p_{ij}(t) = 1.$$ A (temporally) homogeneous Markov chain, or a Markov chain with stationary transition probabilities, associated with I and (p_{ij}) , is a stochastic process $\{x_i\}$, $t \in \mathbf{T}$ or $t \in \mathbf{T}^0$, on the probability triple $(\Omega, \mathfrak{F}, \mathbf{P})$, with the generic sample point ω , having the following properties: This paper was prepared with partial support of the Air Force Office of Scientific Research, under Contract AF 49(638)-265.