COMPARISON OF THE NORMAL SCORES AND WILCOXON TESTS

J. L. HODGES, JR. AND E. L. LEHMANN UNIVERSITY OF CALIFORNIA, BERKELEY

1. Introduction

For testing the equality of two distributions F and G on the basis of samples X_1, \dots, X_m and Y_1, \dots, Y_n from these distributions, a number of procedures are available. If the tests are to be powerful against shift alternatives given by

(1.1)
$$G(y) = F(y - \theta),$$

the most commonly proposed tests are

(a) Student's t test;

(b) Wilcoxon's two-sample test based on the sum $s_1 + \cdots + s_n$ of ranks of the Y's;

(c) The Normal scores test. This test has been proposed in two asymptotically equivalent versions, the test statistic in both cases being of the form

$$(1.2) h(s_1) + \cdots + h(s_n)$$

with large values significant against the alternatives $\theta > 0$.

(i) The function

(1.3)
$$h(s) = E(W^{(s)}),$$

where $W^{(1)} < \cdots < W^{(m+n)}$ are the order statistics of a sample of size m + nfrom a standard normal distribution was introduced by Fisher and Yates in the introduction to table XX of [3], who also gave a table of (1.3). These authors propose replacing the variables X, and Y, in the t-statistic by the function (1.3) of their ranks and applying to these values the usual analysis of variance, which amounts to using as critical value that appropriate to the t-test. The corresponding rank test (in which the critical value is obtained from the distribution of ranks rather than that of t), was proposed by Hoeffding [5] and discussed further by Terry [8], who also gave a table of percentage points.

(ii) The closely related function

(1.4)
$$h(s) = \Phi^{-1} \left(\frac{s}{m+n+1} \right),$$

where Φ denotes the cumulative distribution function of the standard normal

This research was sponsored in part by the Office of Naval Research under Contracts. Nonr-222(43) and 2842(00).