A MARTINGALE SYSTEM THEOREM AND APPLICATIONS

Y. S. CHOW
IBM RESEARCH CENTER, YORKTOWN HEIGHTS
AND
HERBERT ROBBINS
COLUMBIA UNIVERSITY

1. Introduction

Let (W, \mathfrak{F}, P) be a probability space with points $\omega \in W$ and let $\left(y_{n}, \mathfrak{F}_{n}\right)$, $n=1,2, \cdots$, be an integrable stochastic sequence: y_{n} is a sequence of random variables, \mathcal{F}_{n} is a sequence of σ-algebras with $\mathfrak{F}_{n} \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}, y_{n}$ is measurable with respect to \mathcal{F}_{n}, and $E\left(y_{n}\right)$ exists, $-\infty \leqq E\left(y_{n}\right) \leqq \infty$. A random variable $s=s(\omega)$ with positive integer values is a sampling variable if $\{s \leqq n\} \in \mathcal{F}_{n}$ and $\{s<\infty\}=W$. (We denote by $\{\cdots\}$ the set of all ω satisfying the relation in braces, and understand equalities and inequalities to hold up to sets of P-measure 0 .) We shall be concerned with the problem of finding, if it exists, a sampling variable s which maximizes $E\left(y_{s}\right)$.

To define a sampling variable s amounts to specifying a sequence of sets $B_{n} \in \mathfrak{F}_{n}$ such that

$$
\begin{equation*}
0=B_{0} \subset \cdots \subset B_{n} \subset B_{n+1} \subset \cdots ; \bigcup_{1}^{\infty} B_{n}=W \tag{1}
\end{equation*}
$$

the sampling variable s being defined by

$$
\begin{equation*}
\{s \leqq n\}=B_{n}, \quad\{s=n\}=B_{n}-B_{n-1} \tag{2}
\end{equation*}
$$

We shall be particularly interested in the case in which the sequence $\left(y_{n}, \mathcal{F}_{n}\right)$ is such that the sequence of sets

$$
\begin{equation*}
B_{n}=\left\{E\left(y_{n+1} \mid F_{n}\right) \leqq y_{n}\right\} \tag{3}
\end{equation*}
$$

satisfies (1). We shall call this the monotone case. In this case a sampling variable s is defined by

$$
\begin{equation*}
\{s \leqq n\}=\left\{E\left(y_{n+1} \mid \mathfrak{F}_{n}\right) \leqq y_{n}\right\} \tag{4}
\end{equation*}
$$

and s satisfies

$$
E\left(y_{n+1} \mid \mathfrak{F}_{n}\right) \begin{cases}>y_{n}, & s>n \tag{5}\\ \leqq y_{n}, & s \leqq n\end{cases}
$$

The relations (5) will be fundamental in what follows.
This research was sponsored in part by the Office of Naval Research under Contract No. Nonr-226 (59), Project No. 042-205.

