A MARTINGALE SYSTEM THEOREM AND APPLICATIONS

Y. S. CHOW

IBM RESEARCH CENTER, YORKTOWN HEIGHTS AND HERBERT ROBBINS COLUMBIA UNIVERSITY

1. Introduction

Let (W, \mathfrak{F}, P) be a probability space with points $\omega \in W$ and let (y_n, \mathfrak{F}_n) , $n = 1, 2, \cdots$, be an *integrable stochastic sequence*: y_n is a sequence of random variables, \mathfrak{F}_n is a sequence of σ -algebras with $\mathfrak{F}_n \subset \mathfrak{F}_{n+1} \subset \mathfrak{F}$, y_n is measurable with respect to \mathfrak{F}_n , and $E(y_n)$ exists, $-\infty \leq E(y_n) \leq \infty$. A random variable $s = s(\omega)$ with positive integer values is a sampling variable if $\{s \leq n\} \in \mathfrak{F}_n$ and $\{s < \infty\} = W$. (We denote by $\{\cdots\}$ the set of all ω satisfying the relation in braces, and understand equalities and inequalities to hold up to sets of *P*-measure 0.) We shall be concerned with the problem of finding, if it exists, a sampling variable *s* which maximizes $E(y_s)$.

To define a sampling variable s amounts to specifying a sequence of sets $B_n \in \mathfrak{F}_n$ such that

(1)
$$0 = B_0 \subset \cdots \subset B_n \subset B_{n+1} \subset \cdots ; \bigcup_1 B_n = W,$$

the sampling variable s being defined by

(2)
$$\{s \leq n\} = B_n, \qquad \{s = n\} = B_n - B_{n-1}.$$

We shall be particularly interested in the case in which the sequence (y_n, \mathfrak{F}_n) is such that the sequence of sets

$$B_n = \{E(y_{n+1}|\mathfrak{F}_n) \leq y_n\}$$

satisfies (1). We shall call this the monotone case. In this case a sampling variable s is defined by

(4)
$$\{s \leq n\} = \{E(y_{n+1}|\mathfrak{F}_n) \leq y_n\},\$$

and s satisfies

(5)
$$E(y_{n+1}|\mathfrak{F}_n) \begin{cases} > y_n, & s > n, \\ \leq y_n, & s \leq n. \end{cases}$$

The relations (5) will be fundamental in what follows.

This research was sponsored in part by the Office of Naval Research under Contract No. Nonr-226 (59), Project No. 042-205.