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1. Introduction

We consider a Markov process x,, # = 0, 1, - -. The random variables x, belong to
an abstract set X in which a Borel field B is defined, X itself being an element of B.
It is assumed throughout this paper that B is separable; that is, B is the Borel extension
of a denumerable family of sets. The transition law of the process is given by a function
P(x, E) = P!(x, E), this function being interpreted as the conditional probability that
%ny1 € E, given x, = x. The n-step transition probability is designated by P*(x, E). When
conditional probabilities are used below, it will usually be understood that they are the
ones uniquely determined by the transition probabilities. The sets in B will sometimes
be called “measurable sets.”

Throughout this paper a “measure” will mean a countably additive set function, de-
fined on the measurable sets, nonnegative, and not identically 0. (The words ‘“‘countably
additive” will sometimes be repeated for emphasis.) A “probability measure” or “prob-
ability distribution” will be a measure of total mass 1. Notice that we do not require
measure to be finite. A “sigma-finite” measure is a measure such that X is the union of
a denumerable number of sets, each of which has a finite measure.

Various conditions are known which imply the existence of a probability measure
Q(E) which is a stationary distribution for the x,-process; that is, Q satisfies, for each
measurable E,

(1.1) 0 (B) =fXQ(dx)P(x,E).

If x, has this distribution, so has «, for every #. Two sets of conditions for the existence
of such a probability measure were given by Doeblin. One set is discussed in Doob (see
pp- 190 ff. in [7]). A more general set is given in [6].

There are many situations where there is no probability measure satisfying (1.1), but
where a solution can be found if Q(X) = « is allowed. The simplest example is the ran-
dom walk where x, takes integer values, and can increase or decrease by 1, with proba-
bilities 1/2 each, at each step. In this case a solution to (1.1) can be obtained by assign-
ing to any set of integers a Q-measure equal to the number of integers in the set. All in-
tegers are ‘“equally probable.”

In this paper a solution of (1.1) will always mean a sigma-finite measure Q which
satisfies (1.1) for every measurable set E. The principal result, contained in theorem 1, is
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