SOME REGRESSION PROBLEMS IN TIME SERIES ANALYSIS

MURRAY ROSENBLATT¹ COLUMBIA UNIVERSITY AND NEW YORK UNIVERSITY

1. Introduction

Estimates of the regression coefficients which are unbiased and linear in the observations are discussed in this paper. The residual is assumed to be a stationary process. Two specific estimates are discussed, the least-squares estimate and the Markov estimate. I call the estimate which is computed under the assumption that the residual is an orthogonal process the least-squares estimate. The Markov estimate is the linear unbiased estimate with minimal covariance matrix. The basic assumptions made in the paper are discussed in section 2 and are held to throughout the paper. In section 3 some remarks about the approximation of a continuous positive definite matrix-valued function by finite trigonometric forms are made. These remarks are used in section 4 to obtain the main results about the asymptotic behavior of the covariance matrices of the leastsquares and Markov estimates. The next section discusses the many interesting cases in which the least-squares estimate is asymptotically as good as the Markov estimate. The first really systematic discussion of some of these problems was given by U. Grenander [1]. Further work was carried out by U. Grenander and M. Rosenblatt in [2], [3], and [4]. The author considers some of these problems in the case of a vector-valued time series in [5]. Some of the results of this paper are a generalization of some of those obtained in [5].

A few cases in which the least-squares estimate is not asymptotically efficient in the class of linear unbiased estimates are discussed in sections 5 and 7. Some small sample computations for a linear regression with a residual which is a first order autoregressive scheme are carried out in section 6 to test the asymptotic theory.

2. Assumptions and notation

I assume that the observed process y_i is a vector-valued process (a k-vector)

(2.1)
$$y_t = x_t + m_t$$
, $t = \cdots, -1, 0, 1, \cdots$

where $m_t = Ey_t$ is the mean value sequence and x_t , $Ex_t \equiv 0$, is the sequence of residuals. The residual x_t is assumed to be weakly stationary, that is, the covariances

(2.2)
$$r_{t-\tau} = r_{t-\tau} = E x_t x_{\tau}' = E (y_t - m_t) (y_{\tau} - m_{\tau})'^{-2}$$

depend only on the difference $t - \tau$. For mathematical convenience, in sections 3 and 4, I assume that the components of the vector observations are complex valued. The real-

Based in part on research supported by the Office of Naval Research at the Statistical Research Center, University of Chicago.

¹ Now at Indiana University.

 x_i is column vector. Given a matrix A, A' denotes the conjugated transpose of A.