A REMARK ON CHARACTERISTIC FUNCTIONS

A. ZYGMUND
UNIVERSITY OF CHICAGO

Let $F_{1}(t), F_{2}(t), \ldots, F_{n}(t), \ldots$ be a sequence of distribution functions, and let

$$
\varphi_{n}(x)=\int_{-\infty}^{+\infty} e^{i x t} d F_{n}(t)
$$

be the corresponding characteristic functions. If the sequence $\left\{\varphi_{n}(x)\right\}$ converges over every finite interval, and if the limit is continuous at the point $x=0$, then, as is very well known, the sequence $\left\{F_{n}(t)\right\}$ converges to a distribution function $F(t)$ at every point of continuity of the latter (see, for example, [1, p. 96]. It is also very well known that in this theorem convergence over every finite interval cannot be replaced by convergence over a fixed interval containing the point $x=0$.

The situation is different if the random variables whose distribution functions are the F_{n} are uniformly bounded below (or above). Without loss of generality we may assume that the random variables in question are positive, so that all $F_{n}(t)$ are zero for t negative. The purpose of this note is to prove the following theorem.

Theorem. Let $F_{1}(t), F_{2}(t), \ldots, F_{n}(t), \ldots$ be a sequence of distribution functions all vanishing for $t \leqq 0$, and let

$$
\varphi_{n}(x)=\int_{0}^{+\infty} e^{i x t} d F_{n}(t), \quad-\infty<x<+\infty
$$

If the functions $\varphi_{n}(x)$ tend to a limit in an interval around $x=0$, and if the limiting function is continuous at $x=0$, then there is a distribution function $F(t)$ such that $F_{n}(t)$ tends to $F(t)$ at every point of continuity of F.

Proof. Let $z=x+i y$, and let us consider the functions

$$
\varphi_{n}(z)=\int_{0}^{+\infty} e^{i z t} d F_{n}(t)=\int_{0}^{+\infty} e^{i x t} e^{-y t} d F_{n}(t) .
$$

Each $\varphi_{n}(z)$ is regular for $y>0$, continuous for $y \geqq 0$, and is of modulus $\leqq 1$ there. For z real, $\varphi_{n}(z)$ coincides with the characteristic function $\varphi_{n}(x)$. It is easy to see that the sequence $\left\{\varphi_{n}(z)\right\}$ converges in the half plane $y>0$, and that the convergence is uniform over any closed and bounded set of this half plane. For let $z=\lambda(\zeta)$ be a conformal mapping of the half plane $y>0$ onto the unit circle $|\zeta|<1$, and let us consider the functions

$$
\begin{equation*}
\varphi_{n}^{*}(\zeta)=\varphi_{n}[\lambda(\zeta)] . \tag{1}
\end{equation*}
$$

These functions are regular for $|\zeta|<1$, are numerically $\leqq 1$ there and their

