A REMARK ON CHARACTERISTIC FUNCTIONS

A. ZYGMUND

UNIVERSITY OF CHICAGO

Let $F_1(t), F_2(t), \ldots, F_n(t), \ldots$ be a sequence of distribution functions, and let

$$\varphi_n(x) = \int_{-\infty}^{+\infty} e^{ixt} dF_n(t)$$

be the corresponding characteristic functions. If the sequence $\{\varphi_n(x)\}$ converges over every finite interval, and if the limit is continuous at the point x = 0, then, as is very well known, the sequence $\{F_n(t)\}$ converges to a distribution function F(t) at every point of continuity of the latter (see, for example, [1, p. 96]. It is also very well known that in this theorem convergence over every finite interval cannot be replaced by convergence over a fixed interval containing the point x = 0.

The situation is different if the random variables whose distribution functions are the F_n are uniformly bounded below (or above). Without loss of generality we may assume that the random variables in question are positive, so that all $F_n(t)$ are zero for t negative. The purpose of this note is to prove the following theorem.

THEOREM. Let $F_1(t), F_2(t), \ldots, F_n(t), \ldots$ be a sequence of distribution functions all vanishing for $t \leq 0$, and let

$$\rho_n(x) = \int_0^{+\infty} e^{ixt} dF_n(t), \qquad -\infty < x < +\infty.$$

If the functions $\varphi_n(x)$ tend to a limit in an interval around x = 0, and if the limiting function is continuous at x = 0, then there is a distribution function F(t) such that $F_n(t)$ tends to F(t) at every point of continuity of F.

PROOF. Let z = x + iy, and let us consider the functions

$$\varphi_n(z) = \int_0^{+\infty} e^{izt} dF_n(t) = \int_0^{+\infty} e^{ixt} e^{-yt} dF_n(t).$$

Each $\varphi_n(z)$ is regular for y > 0, continuous for $y \ge 0$, and is of modulus ≤ 1 there. For z real, $\varphi_n(z)$ coincides with the characteristic function $\varphi_n(x)$. It is easy to see that the sequence $\{\varphi_n(z)\}$ converges in the half plane y > 0, and that the convergence is uniform over any closed and bounded set of this half plane. For let $z = \lambda(\zeta)$ be a conformal mapping of the half plane y > 0 onto the unit circle $|\zeta| < 1$, and let us consider the functions

(1)
$$\varphi_n^*(\zeta) = \varphi_n \left[\lambda\left(\zeta\right)\right].$$

These functions are regular for $|\zeta| < 1$, are numerically ≤ 1 there and their