A CONTRIBUTION TO THE THEORY OF STOCHASTIC PROCESSES

HARALD CRAMÉR UNIVERSITY OF STOCKHOLM

1. Introduction

Let ω denote a point or element of an arbitrary space Ω , where a probability measure $\Pi(\Sigma)$ is defined for every set Σ belonging to a certain additive class of sets in Ω , the Π -measurable sets. The probability distribution in Ω defined by $\Pi(\Sigma)$ will be referred to as the *probability field* (Π , Ω). The points ω will be denoted as the *elementary events* of the field, while any set Σ corresponds to an *event*, the probability of which is equal to $\Pi(\Sigma)$.

A complex valued II-measurable function

$$x = g(\omega)$$

constitutes a random variable, defined on the field (Π, Ω) . The mean value of x is defined by the relation

(1)
$$Ex = \int_{\Omega} g(\omega) \, d\Pi \, .$$

Throughout the paper, we shall always assume that, for every random variable considered, we have

$$Ex = \int_{\Omega} g(\omega) d\Pi = 0, \qquad E |x|^2 = \int_{\Omega} |g(\omega)|^2 d\Pi < \infty.$$

The first condition introduces some formal simplification, but does not imply any restriction of the generality of our considerations, while the second condition is essential. Two variables x and y are considered as identical, if $E|x - y|^2 = 0$.

Consider a complex valued function $x(t, \omega)$ such that, for every fixed t belonging to some specified set T, the function $x(t, \omega)$ is a II-measurable function of ω , and thus defines a random variable x(t) on the field (II, Ω). When t ranges over T, we thus obtain a family of random variables, depending on the parameter t. On the other hand, to any fixed elementary event ω there corresponds a function

$$x(t) = x(t, \omega),$$

defined for all t belonging to T, and to any event Σ there corresponds a set of functions x(t) having the probability $\Pi(\Sigma)$. The function x(t) will be denoted as a random function, defined on the field (Π, Ω) .

Throughout this paper, the set T will be assumed to be the real axis, $-\infty < t < +\infty$. However, most of our considerations may easily be extended to more general spaces.