CONTINUOUS PARAMETER MARTINGALES

J. L. DOOB UNIVERSITY OF ILLINOIS

1. Introduction

Let Ω be an abstract space of points ω , and let $Pr\{\cdot\}$ be a probability measure defined on some Borel field of ω sets. The sets of this field will be called *measurable*. A family of (real or complex valued) random variables, that is of measurable ω functions, is called a *stochastic process*. We shall use the notation $\{x(t), t \in T\}$ to denote a stochastic process. Here T is the parameter set of the process, and x(t) is for each $t \in T$ a random variable, taking on the value $x(t, \omega)$ for given t, ω . For fixed $\omega, x(t, \omega)$ determines a function $x(\cdot, \omega)$ of $t \in T$. The functions of t determined in this way are called the *sample functions* (or sample sequences if T is finite or denumerable) of the process. The random variable x(t) can also appropriately be denoted by $x(t, \cdot)$, but the latter notation will not be used. The phrase *almost all sample functions* will mean *for almost all* ω .

Suppose that our old friend Peter is playing a fair game with his old friend Paul (or suppose that the classical situation is modernized, so that a SCIENTIST plays NATURE). Suppose that at time t our protagonist has fortune x(t). One mathematical version of a fair game is obtained by supposing that x(t) is a random variable, and that our protagonist's expected fortune at time t, in view of his previous fortunes up to time s < t, is simply x(s). More precisely our mathematical version of a fair game is a stochastic process $\{x(t), t \in T\}$ for which T is a simply ordered set, for which

$$E\left\{\left|x\left(t\right)\right.\right\}<\infty, \qquad t\in T,$$

$$E \{x(t) \mid x(r), r \leq s\} = x(s)$$

with probability 1, if s < t. A stochastic process satisfying these conditions is called a *martingale*.

If x is a random variable, it will be convenient to denote the ω set where $x(\omega) \in A$ by $\{x \in A\}$. Here and in the following, in this connection, it will be understood that A is a linear set if the random variable x is real and a plane set if x is complex. The ω measure of the indicated set will be denoted by $Pr\{x \in A\}$, if this ω set is measurable. The corresponding conventions are made if more than one random variable is involved. The integral of a random variable x on a measurable set Λ will be denoted by

$$\int_{\Lambda} x \, dPr \, .$$

This research was connected with a probability project at Cornell University under an Office of Naval Research contract.