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1. Introduction
The principal object of the present paper is to prove theorem 2 below. This

theorem characterizes the minimal complete class in the problem under considera-
tion, and improves on the result of theorem 1. Theorem 1 has been proved by one
of us in much greater generality [1]. The proof given below is new and very expedi-
tious. Another reason for giving the proof of theorem 1 here is that it is the first
step in our proof of theorem 2. A different proof of theorem 1, based, like ours, on
certain properties of convex bodies in finite Euclidean spaces, was communicated
earlier to the authors by Dr. A. Dvoretzky. Theorem 3 gives another characteriza-
tion of the minimal complete class.

Let x be the generic point of a Euclidean' space Z, and fi(x), . . . , fm(x) be any
m (> 1) distinct cumulative probability distributions on Z. The statistician is
presented with an observation on the chance variable X which is distributed in Z
according to an unknown one of fi, . . ., fin. On the basis of this observation he has
to make one of I decisions, say di, . . . , di. The loss incurred when x is the observed
point, fi is the actual (unknown) distribution, and the decision dj is made, is
Wij(x), where Wij(x) is a measurable function of x such that

f Wi;(x) I dfi< x i=1, . ,m; j= 1,...,I

A randomized decision function 77(x), say, hereafter often called 'test" for short,
is defined as follows: 1(x) = [fl1(x), i72(x), . . ., ,l(x)] where

(a) 7(x) is defined for all x,
(b) 0 _ j(x), j = 1, .. ,1,

(c) E qj(x) = 1 identically in x,

(d) qj(x) is measurable, j = 1, . .. , 1.
This research was done under a contract with the Office of Naval Research.
1 The extension to general abstract spaces is trivial and we forego it. This entire paper could

be given an abstract formulation without the least mathematical difficulty.
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