COMPARISON OF EXPERIMENTS

DAVID BLACKWELL
HOWARD UNIVERSITY

1. Summary

Bohnenblust, Shapley, and Sherman [2] have introduced a method of comparing two sampling procedures or experiments; essentially their concept is that one experiment a is more informative than a second experiment $\beta, \alpha \supset \beta$, if, for every possible risk function, any risk attainable with β is also attainable with α. If α is a sufficient statistic for a procedure equivalent to $\beta, a>\beta$, it is shown that $\alpha \supset \beta$. In the case of dichotomies, the converse is proved. Whether $>$ and \supset are equivalent in general is not known. Various properties of \rangle and \supset are obtained, such as the following: if $a>\beta$ and γ is independent of both, then the combination $(a, \gamma)>(\beta, \gamma)$. An application to a problem in 2×2 tables is discussed.

2. Definitions

An experiment a is a set of N probability measures u_{1}, \ldots, u_{N} on a Borel field B of subsets of a space X. The N measures are considered as N possible distributions over X, and performing the experiment consists of observing a sample point $x \in X$. A decision problem is a pair (a, A), where A is a bounded subset of N-space. The points $a \in A$ are considered as the possible actions open to the statistician; the loss from action $a=\left(a_{1}, \ldots, a_{N}\right)$ is a_{i} if the actual distribution of x is u_{i}. A decision procedure f for (a, A) is a B-measurable function from X into A, specifying the action a to be taken as a function of the sample point x obtained by the experiment. With every $f=\left[a_{1}(x), \ldots, a_{N}(x)\right]$ is associated a loss vector

$$
v(f)=\left(\int a_{1}(x) d u_{1}, \ldots, \int a_{N}(x) d u_{N}\right)
$$

the i-th component of $v(f)$ is the expected loss from f if x has distribution u_{i}. The range of $v(f)$ is a subset of N-space which we denote by $R_{1}(a, A)$; the convex closure of $R_{1}(a, A)$ will be denoted by $R(a, A)$ and will be called the set of attainable loss vectors in (a, A); every vector in R is either attainable or approximable by a randomized mixture of $N+1$ decision procedures.

Theorem 1. $R(a, A)=R\left(a, A_{1}\right)=R_{1}\left(a, A_{1}\right)$, where A_{1} is the convex closure of A.
This theorem permits us to restrict attention to closed convex A, which we shall do in the following sections. The proof of the theorem will not be given here; it is straightforward except for the fact that $R\left(a, A_{1}\right)=R_{1}\left(a, A_{1}\right)$. This fact follows from the result that whenever A is closed, so is $R_{1}(a, A)$, which has been proved elsewhere by the author [1].

Following Bohnenblust, Shapley and Sherman [2], we shall say that a is more informative than β, written $a \supset \beta$, if for every A we have $R(a, A) \supset R(\beta, A)$.

