GALTON-WATSON PROCESSES WITH GENERATION DEPENDENCE

DEAN H. FEARN CALIFORNIA STATE COLLEGE, HAYWARD

1. Introduction

A Galton-Watson process Z_n can be thought of in the following way. There is one cell alive in generation zero. This cell dies and gives birth to a random number Z_1 of baby cells in the first generation. Each of these cells dies and gives birth to a random number of cells in the second generation. The number of cells in the second generation is Z_2 . The process continues; Z_n is the number of cells in the *n*th generation. The number of daughters born to a cell is allowed to be a random variable whose distribution depends upon the generation of the cell in question. In this paper the following questions are answered under certain conditions.

- (i) What are the mean and variance of Z_n ?
- (ii) Does $Z_n/E(Z_n)$ converge to a nonzero and nonconstant random variable W?
 - (iii) If the answer to (ii) is yes, what are the mean and variance of W?
 - (iv) What is the behavior of $P(Z_n \neq 0)$ for large n?

If X and Y are random variables and A and B denote events, then E(X) is mean of X, Var(X) is the variance of X, E(X|Y) is the conditional mean of X given Y, P(A) is the probability that A happens, and P(A|B) is the conditional probability that A happens, given that B occurs. This paper is the first chapter of [1].

2. Definition of Z_n , the probability generating function of Z_n , and the Markov nature of Z_n

First, Z_n is defined inductively. Let $X_{n,k}$, for $n=0, 1, 2, \dots, k=1, 2, \dots$, be a family of independent nonnegative integer valued random variables such that, for n fixed, $X_{n,k}$, $k=1, 2, \dots$, are identically distributed. Define $Z_0=1$, and having defined Z_n , define

(1)
$$Z_{n+1} = \begin{cases} \sum_{k=1}^{Z_n} X_{n,k} & \text{if } Z_n \ge 1, \\ 0 & \text{if } Z_n = 0. \end{cases}$$