A CLASS OF STOPPING RULES FOR TESTING PARAMETRIC HYPOTHESES

HERBERT ROBBINS and DAVID SIEGMUND COLUMBIA UNIVERSITY and HEBREW UNIVERSITY

Let $f_{\theta}(x)$, $\theta \in \Omega$, be a one parameter family of probability densities with respect to some σ -finite measure μ on the Borel sets of the line. Denote by P_{θ} the probability measure under which random variables x_1, x_2, \cdots are independent with the common probability density $f_{\theta}(x)$. Let θ_0 be an arbitrary fixed element of Ω and ε any constant between 0 and 1. We are interested in finding stopping rules N for the sequence x_1, x_2, \cdots such that

(1)
$$P_{\theta}(N < \infty) \leq \varepsilon$$
 for every $\theta \leq \theta_0$,

and

(2)
$$P_{\theta}(N < \infty) = 1$$
 for every $\theta > \theta_0$.

Among such rules, we wish to find those which in some sense minimize $E_{\theta}(N)$ for all $\theta > \theta_0$.

A method of constructing rules which satisfy (1) and (2) by using mixtures of likelihood ratios was given in [3]. Here we sketch an alternative method.

Let $\theta_{n+1} = \theta_{n+1}(x_1, \dots, x_n)$ for $n = 0, 1, 2, \dots$, be any sequence of Borel measurable functions of the indicated variables such that

 $n=1,2,\cdots,$

(3)
$$\theta_{n+1} \ge \theta_0.$$

In particular, θ_1 is some constant $\geq \theta_0$. Define

(4)
$$z_n = \prod_{1}^n \frac{f_{\theta_i}(x_i)}{f_{\theta_0}(x_i)}$$

and for any constant b > 0, let

(5)
$$N = \begin{cases} \text{first } n \ge 1 \text{ such that } z_n \ge b, \\ \infty \text{ if no such } n \text{ occurs.} \end{cases}$$

We shall show that under a certain very general assumption on the structure of the family $f_{\theta}(x)$, the inequality (1) holds at least for all $b \ge 1/\varepsilon$.

Assumption. For every triple $\alpha \leq \gamma \leq \beta$ in Ω ,

(6)
$$\int \frac{f_{\alpha}(x)f_{\beta}(x)}{f_{\gamma}(x)} d\mu(x) \leq 1$$

Research supported by Public Health Service Grant No. 1-R01-GM-16895-03.