WHEN IS A FIXED NUMBER OF OBSERVATIONS OPTIMAL?

D. A. DARLING University of California, Irvine

1. Introduction

Many of the classical fixed sample size tests and estimates have sequential counterparts which are more economical, needing on the average fewer observations to ensure a given performance. It turns out, however, that under some circumstances, admittedly artificial, a sample of fixed, nonrandom size is optimal.

We determine here rather inclusive conditions ensuring that for a sequence of partial sums of independent, identically distributed random variables, a fixed sample size is optimal with respect to a given nonnegative payoff function.

2. Notations

Let X_1, X_2, \cdots be independent and identically distributed replicates of a random variable X, and set $S_0 = 0$, $S_n = X_1 + X_2 + \cdots + X_n$, $n \ge 1$.

Let M be the set of all real numbers α for which $\varphi(\alpha)$, the moment generating function of X, is finite: $\varphi(\alpha) = E(\exp \{\alpha X\})$ and $M = \{\alpha | \varphi(\alpha) < \infty\}$. The set M is an interval containing $\alpha = 0$, and may consist of all the real numbers, a subinterval of them, or the sole value zero.

The nonnegative function $r_n(x)$, $n = 0, 1, \dots, x$ real, will be called the payoff function in the sense that if one stops observations after n trials his income is $r_n(S_n)$.

The optimal stopping problem is to determine a stopping time N, if possible, such that

(1)
$$E(r_N(S_N)) = \sup_T E(r_T(S_T)),$$

where the sup on the right is taken over all stopping times T. When such a stopping time N exists, we denote its "value" by V; that is, V is the maximal expected payoff given by (1); $V = E(r_N(S_N))$.

The pair (n, x) is called *accessible* if S_n is contained in every neighborhood of x with positive probability. Clearly, the value of $r_n(x)$ at inaccessible points is irrelevant.

This investigation was supported by PHS Research Grant No. GM-10525-08, National Institutes of Health, Public Health Service.