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1. Introduction

Many of the classical fixed sample size tests and estimates have sequential
counterparts which are more economical, needing on the average fewer observa-
tions to ensure a given performance. It turns out, however, that under some
circumstances, admittedly artificial, a sample of fixed, nonrandom size is optimal.
We determine here rather inclusive conditions ensuring that for a sequence of

partial sums of independent, identically distributed random variables, a fixed
sample size is optimal with respect to a given nonnegative payoff function.

2. Notations

Let X1, X2, * be independent and identically distributed replicates of a ran-
dom variable X, and set So= 0,S. = X1+ X2+ + X.,n 2 1.

Let M be the set of all real numbers a for which p(a), the moment generating
function of X, is finite: so(a) = E(exp {aX}) and M = {aIqp(a) < oo}. The set M
is an interval containing a = 0, and may consist of all the real numbers, a subin-
terval of them, or the sole value zero.
The nonnegative function rn(x), n = 0, 1, * , x real, will be called the payoff

function in the sense that if one stops observations after n trials his income is
rn(Sn) -

The optimal stopping problem is to determine a stopping time N, if possible,
such that

(1) E(rN(SN)) sup E(rT(ST)),
T

where the sup on the right is taken over all stopping times T. When such a stop-
ping time N exists, we denote its "value" by V; that is, V is the maximal ex-
pected payoff given by (1); V = E(rN(SN)).
The pair (n, x) is called accessible if S,, is contained in every neighborhood of x

with positive probability. Clearly, the value of rn(x) at inaccessible points is
irrelevant.
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