COVERAGE OF GENERALIZED CHESS BOARDS BY RANDOMLY PLACED ROOKS

LEO KATZ MICHIGAN STATE UNIVERSITY and MILTON SOBEL UNIVERSITY OF MINNESOTA

1. Introduction

At a recent colloquium on combinatorial structures, H. Kamps and J. van Lint presented a paper [2] on the minimal number of rooks $\sigma(n, k)$ required to "cover" a generalized chessboard; the latter is represented by R_k^n , the set of *n* vectors (or cells) with components in the ring of integers mod k. To explain the notion of "cover" we first define the Hamming distance $d_H(\mathbf{x}, \mathbf{y})$ between two vectors ("squares" of the chessboard) as the number of components in which they differ; under the metric d_H , the board R_k^n is a metric space. The familiar chessboard is R_8^2 . Then the rook domain or region covered by a rook at x is the unit sphere

(1.1)
$$B(x, 1) = \{ y \in R_k^n | d_H(\mathbf{x}, \mathbf{y}) \leq 1 \}.$$

Kamps and van Lint gave the following table of $\sigma(n, k)$ which represents almost all the known results to date for the above deterministic problem.

TABLE I

KNOWN VALUES OF $\sigma(n, k)$								
n k	3	4	5	6	7	8	•••	13
2	2	4	7	12	16	25		
3	5	9	33					3^{10}
4	8	24	4 ³					
5	13			5^{4}				
6	18	72						
7	25					76		

Research supported by NSF Grants GP-11021 and GP-13484.