THE DISTRIBUTION OF GENERATIONS AND OTHER ASPECTS OF THE FAMILY STRUCTURE OF BRANCHING PROCESSES

WOLFGANG J. BÜHLER UNIVERSITY OF HEIDELBERG

1. Introduction

Throughout this paper branching processes will be viewed as models for the development of biological populations. Unless stated otherwise, it will be assumed that the population starts at time t = 0 with one individual in generation 0 and of age 0. Each member of the population will live for a random life time. Then he will be replaced by a random number of new individuals, his sons. These will be in generation k + 1 if their father was a member of the kth generation. Also we shall allow for an individual to "survive," that is, he may have himself as one offspring in generation k and start a new life. In the branching process model, it is further assumed that the lifetimes of all individuals have a common probability distribution with distribution function G, that the probability β for survival is the same for all individuals, that all individuals have the same distribution of the number of offspring given by a probability generating function h, and further, that all the random variables introduced so far are independent.

We shall follow the notations of Harris [10] who has studied many aspects of this model. Until recently the emphasis has been on studying the total population size; the possibility of an individual giving birth to offspring more than once has not usually been considered. The only exception seems to be the papers by Crump and Mode [5], [6], who consider a case somewhat more general than ours.

The questions with which this paper is concerned are about the distribution of generations in a population at a given time, the time pattern according to which generations appear and disappear, the degree of relationship between different individuals, the number of relatives of a certain degree, and so forth.

The first mention of distribution of generations with the present meaning in the literature was by Harris [10] who used the number $Z^{(k)}(t)$ of individuals in generations $0, 1, \dots, k-1$ alive at time t as an approximation to the total

During the author's stay at the University of California, Berkeley, this work was supported in part by Grant No. USPHS GM 10525-07 of the National Institutes of Health.