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1. Introduction

Let a: [0, 0) x R*w 8, and b: [0, 00) x R? w R? be bounded continuous
functions, where S; denotes the class of symmetric, nonnegative definite d x d
matrices. From a and b form the operator
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A strong maximal principle for the operator (0/0t) + L, is a statement of the
form: “for each open ¥ < [0, c0) x R? and each (ty, xo) € 4 there is a set
G(ty, o) & ¥ with the property that (3f/0t) + L,f = 0 on 9(ty, x,) and
f(to, o) = SUPg(, xo) f(E, ) imply f = f(to, xo) on F(ty, x,).” Of course, in
order for a strong maximum principle to be very interesting it must describe the
set 9 (g, xo). Further, it should be possible to show that %(¢,, x,) is maximal.
That is, one wants to know that if (¢;, x;) € ¥ — %(t, o), then there is an f
satisfying (0f/0t) + L,f = 0 on ¥4 (perhaps in a generalized sense) such that
f(tO’ xO) = sup f(t’ :L‘), a'ndf(tl’ xl) < f(to, xo)-

In the case when a(t, x) is positive definite for all (¢, ), L. Nirenberg [6] has
shown that ¢(¢,, x,) can be taken as the closure in % of the set of (¢;, x,) € ¥ N
([to, ©) x R?) such that there exists a continuous map @: [¢,, ¢; ] » R? with
the properties that ¢ (o) = xo, P(t,) = x, and (¢, ¢(t)) € ¥ for all t € (¢, ¢,).
We will give a probabilistic proof of the Nirenberg maximum principle in
Section 3. Moreover, we will also prove there that Nirenberg’s % (ty, o) is
maximal in the desired sense.

If a is only nonnegative definite, the problem of finding a suitable maximum
principle is more difficult. Results in this direction have been proved by J.-M.
Bony [1] and C. D. Hill [3]. Both of these authors employ a modification
of the technique originally introduced by E. Hopf for elliptic operators and
later adapted by Nirenberg for parabolic ones. The major drawback to Bony’s
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