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1. Introduction

The purpose of this exposition is to give correct proots of two well known and
reasonably important propositions concerning continuous additive functionals.
We adopt the terminology and notation of [1] throughout. We fix once and for
all a standard process X = (Q, &, &,, X,, 0,, P*) with state space K. (See
(I-9.2); all such references are to [1].)

The following two theorems are important facts about continuous additive
functionals (CAF’s) of such a process. (See (IV-2.21) or [2].)

THEOREM 1. Let A be a CAF of X. Then A = X, A" where each A" is a
CAF of X having a bounded one potential.

Making use of Theorem 1, one can establish the following result. (See
(V-2.1) or [2].)

THEOREM 2. Suppose that X has a reference measure (that is, satisfies the
hypothesis of absolute continuity). Then every CAF of X is equivalent to a perfect
CAF.

Unfortunately, the proofs known to me of Theorem 1 are not convincing.
For example, the ““proof” in [1] goes as follows. Let 4 be a CAF of X. Define

(1.1) o) = E"f@ e te™ 4 dt.

0
Clearly, 0 < ¢ < 1 and ¢ is universally measurable; actually it is not difficult
to see that ¢ is nearly Borel, but this is not required. Let R = inf {¢: 4, = o0}.
Then it is easy to check that R is a terminal time and that P*(R > 0) = 1 for
all z. Obviously, g(x) = E* [§ e"'e™* dt. Now if T is any stopping time,

RoOr

(1.2) EX{e To(X;); T < R} = E"{e'TJ

0

R
= E"{e"TJ‘ e e Mdu: R < T},
T
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