THE STRUCTURE OF A MARKOV CHAIN

J. L. DOOB
University of Illinois

1. Introduction

Let p be a standard transition function on the set I of integers, that is, a function from $(0, \infty) \times I \times I$ into [0, 1] satisfying

$$
\begin{align*}
\sum_{j} p(t, i, j) & =1 \tag{1.1}\\
p(s+t, i, k) & =\sum_{j} p(s, i, j) p(t, j, k),
\end{align*}
$$

together with the continuity condition $\lim _{t \rightarrow 0} p(t, i, i)=1$. Let f be an absolute probability function, that is, a function from $(0, \infty) \times I$ into [0,1], satisfying

$$
\begin{equation*}
\sum_{j} f(t, j)=1, \quad f(s+t, j)=\sum_{i} f(s, i) p(t, i, j) . \tag{1.2}
\end{equation*}
$$

Let L be an arbitrary set containing I as a subset. There is then a Markov process $\{x(t), t>0\}$ with state space L having the specified transition and absolute probability functions. The notation $x(t)$ will always refer to the t th random variable of such a process, and the process will be called "smooth" if L is topological and if almost every sample function is right continuous with left limits on $(0, \infty)$. Note that this condition does not require the existence of a right limit at 0 . For each $t>0$ the random variable $x(t)$ almost surely has its values in I, but it has been known since Ray's work [11] in 1959 that L and the process can be chosen to make the process and properly chosen extensions of the transition function have desirable smoothness properties. One can always choose L to be an entrance space in the sense of [4]; that is, one can choose L to satisfy the following conditions:
(a) L is a Borel subset of a compact metric space in which I is dense;
(b) for every absolute probability function f there is a smooth corresponding process with state space L;
(c) for every integer $j, p(\cdot, \cdot, j)$ has a continuous extension to $(0, \infty) \times L$ and (1.1) is satisfied for i allowed to be any point of L;
(d) if ξ is in L and if $\{x(t), t>0\}$ is a smooth process with absolute probability function given by $f(t, i)=p(t, \xi, i)$, then $x(0+)$ exists (and is in L) almost surely.

In the following, i, j, k are integers and ξ, η are points of a specified entrance space. The probability measure determined by a smooth process with $f(t, i)=$

