INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS OF OPERATORS ON MARTINGALES

D. L. BURKHOLDER
UNIVERSITY OF ILLINOIS
and
B. J. DAVIS and R. F. GUNDY
RUTGERS UNIVERSITY

1. Introduction

Let \mathcal{M} be a family of martingales on a probability space (Ω, \mathcal{A}, P) and let Φ be a nonnegative function on $[0, \infty]$. The general question underlying both [2] and the present work may be stated as follows: If U and V are operators on \mathcal{M} with values in the set of nonnegative \mathcal{A} measurable functions on Ω , under what further conditions does

$$(1.1) \lambda^{p_0} P(Vf > \lambda) \le c \|Uf\|_{p_0}^{p_0}, \lambda > 0, f \in \mathcal{M},$$

imply $E\Phi(Vf) \leq cE\Phi(Uf)$, $f \in \mathcal{M}$? Here E denotes expectation, integration over Ω with respect to P, and the letter c denotes a positive real number, not necessarily the same number from line to line. In most applications, the first inequality can be proved easily for only one particular value of p_0 , usually for $p_0 = 2$, although it is the second inequality that is really needed. Therefore, it is important to know conditions under which the second follows from the first.

In [2], the function Φ may be any nondecreasing function that satisfies a mild growth condition. The above question is then answered by suitably restricting the martingale f. In this paper, Φ is restricted to be convex, but no conditions are placed on the martingale f.

We state our main results in Section 2. Here, we mention one special but important application. If $f = (f_1, f_2, \cdots)$ is a martingale, we write

(1.2)
$$f_n = \sum_{k=1}^n d_k, \qquad n \ge 1,$$
$$f^* = \sup_n |f_n|,$$
$$S(f) = \left(\sum_{k=1}^\infty d_k^2\right)^{1/2}$$

The maximal function f^* and the square function S(f) are closely linked.

This research was supported in part by the National Science Foundation under Grants GP-23835 and GP-19222.