A COUNTEREXAMPLE ON MEASURABLE PROCESSES ## R. M. DUDLEY MASSACHUSETTS INSTITUTE OF TECHNOLOGY In 1947, Doob [7] posed the following question. Suppose $x=\{x_t, 0 \leq t \leq 1\}$ is a (jointly) measurable stochastic process with values in a compact space K, for example, the one point compactification \overline{R} of the real line R. Let \overline{P}_x be the distribution of x in the compact function space of all functions from [0,1] into K, where \overline{P}_x is a regular Borel measure [15]. Then is the evaluation map $E:(t,f)\to f(t)$ necessarily measurable for the product measure $\lambda\times\overline{P}_x$, where λ is Lebesgue measure? I shall give a counterexample, assuming the continuum hypothesis. The counterexample is a Gaussian process. Replacing ($[0,1],\lambda$) by an equivalent measure space (H,μ) , where H is a Hilbert space and μ a suitable Gaussian probability measure, we can take the process x to be the standard Gaussian linear process x on x or x or x definition of this particular process, the method is applicable to various other processes represented by convergent series x or x definition of the possibility of weakening the continuum hypothesis assumption will be discussed in an Appendix. Earlier, M. Mahowald [14] proposed a positive solution to the Kakutani-Doob problem. But the last step in his argument applies the Fubini theorem to sets in a product space which have not been shown to be measurable. After the counterexample (Proposition 1), we give a few easier facts which also contribute to a broader conclusion that uncountable Cartesian products of compact metric spaces (for example, intervals) are relatively "bad" spaces as regards measurability. DEFINITION. Let (X, \mathcal{B}) be a measurable space. An X valued stochastic process with parameter set T and probability space (Ω, \mathcal{S}, P) is a function x from $T \times \Omega$ into X such that for each t in T, $x(t, \cdot)$ is measurable from (Ω, \mathcal{S}) into (X, \mathcal{B}) . Let X^T denote the set of all functions from T into X. Suppose X is a Polish space (complete separable metric space) or a compact Hausdorff space and \mathcal{B} its class of Borel sets. Then for any stochastic process x as in Definition 1, there is a probability measure P_x on X^T such that for any $t_1, \dots, t_n \in T$ and $B_1, \dots, B_n \in \mathcal{B}$, (1) $$P\{\omega : X(t_j, \omega) \in B_j, j = 1, \dots, n\} = P_x\{f : f(t_i) \in B_i, j = 1, \dots, n\},$$ according to a well-known theorem of Kolmogorov. This research was partially supported by National Science Foundation Grant GP-14535.