SOME EFFECTS OF ERRORS OF MEASUREMENT ON LINEAR REGRESSION

W. G. COCHRAN
Harvard University

1. Introduction

I assume a bivariate distribution of pairs (y, X) in which y has a linear regression on X

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} X+e \tag{1.1}
\end{equation*}
$$

where e, X are independently distributed and $E(e \mid X)=0$. However, the measurement of X is subject to error. Thus we actually observe pairs (y, x), with $x=X+h$, where h is a random variable representing the error of measurement.

Given a random sample of pairs (y, x), previous writers have discussed various approaches to the problem of making inferences about the line $\beta_{0}+\beta_{1} X$, sometimes called the structural relation between y and X. In the present context this line might be called "the regression of y on the correct X " to distinguish it from "the regression of y on the fallible x." An obviously relevant question is: under assumption (1.1), what is the nature of the regression of y on x ?

Lindley [5] gave the necessary and sufficient conditions that the regression of y on the fallible x be linear in the narrow sense. This means that $E(y \mid x)$ is linear in x, or equivalently that

$$
\begin{equation*}
y=\beta_{0}^{\prime}+\beta_{1}^{\prime} x+e^{\prime} \tag{1.2}
\end{equation*}
$$

where $E\left(e^{\prime} \mid x\right)=0$. This definition does not require that e^{\prime} and x be independently distributed. Lindley's proof assumes that the error of measurement h is distributed independently of X. His necessary and sufficient conditions are that Fisher's cumulant function (logarithm of the characteristic function) of h be a multiple of that of X. Roughly speaking, this implies that h and X belong to the same class of distributions. Thus if X is distributed as $\chi^{2} \sigma^{2}$, so is h, though the degrees of freedom can differ: if X is normal, h must be normal.

Several writers have discussed the corresponding necessary and sufficient conditions if we demand in addition that the residual e^{\prime} in (1.2) be distributed independently of x. In particular, Fix [3] showed that if the second moment of

[^0]
[^0]: This work was supported by the Office of Naval Research through Contract N00014-56A-02980017, NR-042-097 with the Department of Statistics, Harvard University.

