ASYMPTOTIC DISTRIBUTION OF THE LOG LIKELIHOOD RATIO BASED ON RANKS IN THE TWO SAMPLE PROBLEM¹

I. R. SAVAGE² and J. SETHURAMAN FLORIDA STATE UNIVERSITY

1. Introduction

Let $X_1, X_2, \dots, Y_1, Y_2, \dots$, be independent random variables where the X (Y) have common strictly increasing and continuous distribution function $F_1^*(F_2^*)$. Let N = 2n and $W_{N,1} \leq W_{N,2} \leq \dots \leq W_{N,N}$ be a rearrangement of $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n$ in increasing order of magnitude, $n = 1, 2, \dots$. Define

(1.1)
$$Z_{N,i} = \begin{cases} 0 & \text{if } W_{N,i} \text{ is an } X, \\ 1 & \text{if } W_{N,i} \text{ is a } Y, \end{cases}$$

 $i = 1, \cdots, N$, and let $\mathbf{Z}_N = (Z_{N,1}, \cdots, Z_{N,N})$.

Let F_1 and F_2 be two arbitrary strictly increasing continuous distribution functions. Let

(1.2)
$$L_N = L_N(\mathbf{z}_N) = \frac{P(\mathbf{Z}_N = \mathbf{z}_N | F_1^* = F_1, F_2^* = F_2)}{P(\mathbf{Z}_N = \mathbf{z}_N | F_1^* = F_2^* = F_1)}.$$

Note that the denominator in the above does not depend on F_1 and is equal to $1/\binom{N}{n}$ and that the numerator is unchanged if F_1 and F_2 are replaced by F_1K^{-1} and F_2K^{-1} , where K is a strictly increasing continuous distribution function. Let

(1.3)
$$\ell_N = \ell_N(\mathbf{z}_N) = \log L_N(\mathbf{z}_N).$$

From now on P(E) will stand for the probability of the event E when the common distribution of X and Y are F_1^* and F_2^* , respectively. Our main aim is to prove the asymptotic normality of $\ell_N(\mathbf{Z}_N)$ under suitable conditions (see Theorems 5.1 and 5.2). The conditions imposed are A1, A2, A3, and B or $\overline{A1}, \overline{A2}$, and \overline{B} (see

¹Research supported by the Army, Navy and Air Force under the Office of Naval Research Contract No. NONR 988(08), Task Order NR 042-004. Reproduction in whole or in part is permitted for any purpose of the U.S. Government.

² Now visiting at the Center for Advanced Studies in the Behavioral Sciences, Stanford.